矩阵二分快速幂优化dp动态规划



矩阵快速幂代码:
int n; // 所有矩阵都是 n * n 的矩阵
struct matrix {
int a[100][100];
};
matrix matrix_mul(matrix A, matrix B, int mod) {
// 2 个矩阵相乘
matrix C;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
C.a[i][j] = 0;
for (int k = 0; k < n; ++k) {
C.a[i][j] += A.a[i][k] * B.a[k][j] % mod;
C.a[i][j] %= mod;
}
}
}
return C;
}
matrix unit() {
// 返回一个单位矩阵
matrix res;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i == j) {
res.a[i][j] = 1;
} else {
res.a[i][j] = 0;
}
}
}
return res;
}
matrix matrix_pow(matrix A, int n, int mod) {
// 快速求矩阵 A 的 n 次方
matrix res = unit(), temp = A;
for (; n; n /= 2) {
if (n & 1) {
res = matrix_mul(res, temp, mod);
}
temp = matrix_mul(temp, temp, mod);
}
return res;
}

矩阵快速幂模板
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 110;
const int MOD = 1e9 + 7;
#define mod(x) ((x)%MOD)
//https://www.51nod.com/Challenge/Problem.html#!#problemId=1113
int n;
struct mat{
int m[maxn][maxn];
}unit;
//重载矩阵的乘法
mat operator * (mat a,mat b){
mat ret;
ll x;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
x = 0;
for(int k=0;k<n;k++){
x += mod((ll)a.m[i][k] * b.m[k][j]);
}
ret.m[i][j] = mod(x);
}
}
return ret;
}
//初始化矩阵
void init_unit(){
for(int i=0;i<maxn;i++)
unit.m[i][i] = 1;
return;
}
//矩阵快速幂 前面代码已经重载过乘法运算 并取模 :就等于二分快速幂 + 矩阵乘法
mat pow_mat(mat a,ll n){
mat ret = unit;
while(n){
if(n&1) ret = ret*a;
a = a*a;
n >>= 1;
}
return ret;
}
int main(){
ll x;
init_unit();
cin>>n>>x;
mat a;
//输入数据
for(int i = 0;i < n;i++){
for(int j=0;j<n;j++){
cin>>a.m[i][j];
}
}
a = pow_mat(a,x);//计算a矩阵的x次幂
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(j+1==n) cout<<a.m[i][j]<<endl;
else cout<<a.m[i][j]<<" ";
}
}
return 0;
}
矩阵二分快速幂优化dp动态规划的更多相关文章
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)
传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...
- 2018.10.19 NOIP模拟 硬币(矩阵快速幂优化dp)
传送门 不得不说神仙出题人DZYODZYODZYO出的题是真的妙. f[i][j][k]f[i][j][k]f[i][j][k]表示选的硬币最大面值为iii最小面值不小于jjj,总面值为kkk时的选法 ...
- 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)
传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...
- bzoj 4000 矩阵快速幂优化DP
建立矩阵,跑快速幂 /************************************************************** Problem: 4000 User: idy002 ...
- 2018.10.19 NOIP训练 桌子(快速幂优化dp)
传送门 勉强算一道dp好题. 显然第kkk列和第k+nk+nk+n列放的棋子数是相同的. 因此只需要统计出前nnn列的选法数. 对于前mmm%nnn列,一共有(m−1)/n+1(m-1)/n+1(m− ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
随机推荐
- SQL语句中的正则表达式
正则表达式 REGEXP_LIKE执行正则表达式匹配 SELECT FIRST_NAME FROM EMPLOYEES WHERE REGEXP_LIKE(FIRST_NAME,'^al(an|yss ...
- Jungle Roads---poj1251 hdu1301
Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid ...
- URAL 1517 Freedom of Choice (后缀数组 输出两个串最长公共子串)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/whyorwhnt/article/details/34075603 题意:给出两个串的长度(一样长) ...
- python安装HTMLTestRunner
== https://pypi.org/project/html-testRunner/#files 下载 放在这路径下 cmd中进行安装
- [LeetCode] questions conclustion_Path in Tree
Path in Tree: [LeetCode] 112. Path Sum_Easy tag: DFS input: root, target, return True if exi ...
- NLP总览
一.自然语言处理概述 1)自然语言处理:利用计算机为工具,对书面实行或者口头形式进行各种各样的处理和加工的技术,是研究人与人交际中以及人与计算机交际中的演员问题的一门学科,是人工智能的主要内容. 2) ...
- 深入浅出TCP之listen
原文:http://blog.chinaunix.net/uid-29075379-id-3858844.html int listen(int fd, int backlog); 有几个概念需要在开 ...
- linux make configure make
开放源码:就是程序代码,写给人类看的程序语言,但机器并不认识,所以无法执行: 编译程序:将程序代码转译成为机器看得懂的语言,就类似编译者的角色: 可执行文件:经过编译程序变成二进制后机器看得懂所以可以 ...
- xhtml 的三种 doctype
{1}文档宣告 <!ODCTYPE html PUBLIC"-//W3C//DTD XHTML 1.0 [there]//EN" "http://www.w4org/TR/xhtml1/DTD/ ...
- 20155334 2016-2017-2 《Java程序设计》第八周学习总结
20155334 2016-2017-2 <Java程序设计>第八周学习总结 教材学习内容总结 第十四章:NIO与NIO2 NIO的定义: InputStream.OutputStream ...