LITTLE SHOP OF FLOWERS

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 19877 Accepted: 9153

Description

You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

V A S E S

1

2

3

4

5

Bunches

1 (azaleas)

7 23 -5 -24 16

2 (begonias)

5 21 -4 10 23

3 (carnations)

-21

5 -4 -20 20

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

Input

The first line contains two numbers: F, V.

The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.

1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.

F <= V <= 100 where V is the number of vases.

-50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

Output

The first line will contain the sum of aesthetic values for your arrangement.

Sample Input

3 5

7 23 -5 -24 16

5 21 -4 10 23

-21 5 -4 -20 20

Sample Output

53



题意:就是给你一个二维数组,每一行只能选一个,并且选择的数字从上倒下,必须是从左到右的顺序,求最大的和

。动态规划的题目

状态转移方程 dp[i][j]=max(dp[i-1][j-1]+a[i][j],dp[i][j-1]);

这个题目需要注意的是当dp[i][i]即i=j的时候状态转移方程是

dp[i][i]=dp[i-1][i-1]+a[i][i];

为什么呢?因为当i=j的时候,之前的几列都可以确定了,因为要求顺序是从左到右啊,

还有这道题目让我对动态规划更深层的认识是:

时时刻刻要记住动态规划是从子问题不断递推而来,解决最终问题的,一开始我不明白为什么 dp[i][j]=max(dp[i-1][j-1]+a[i][j],dp[i][j-1]);完全没有考虑dp[i-1][j….m],就是对dp[i][j]来说,i-1行,大于j也可以取到啊,为什么不考虑呢?原来,这是因为,对于dp[i][j]这个子问题来说,整个二维数组最大的就是行长度就是j无需考虑比j大的

#include <iostream>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdlib.h> using namespace std;
int dp[100][100];//i行,j列,最大的值
int f,v;
int a[100][100];
int main()
{
while(scanf("%d%d",&f,&v)!=EOF)
{
for(int i=1;i<=f;i++)
{
for(int j=1;j<=v;j++)
{
scanf("%d",&a[i][j]);
}
}
memset(dp,0,sizeof(dp));
for(int i=1;i<=f;i++)
{
dp[i][i]=dp[i-1][i-1]+a[i][i];
for(int j=i+1;j<=v;j++)
{
dp[i][j]=max(dp[i-1][j-1]+a[i][j],dp[i][j-1]); }
}
printf("%d\n",dp[f][v]); }
return 0;
}

POJ-1157 LITTLE SHOP OF FLOWERS(动态规划)的更多相关文章

  1. POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)

    You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...

  2. sgu 104 Little shop of flowers 解题报告及测试数据

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...

  3. [POJ1157]LITTLE SHOP OF FLOWERS

    [POJ1157]LITTLE SHOP OF FLOWERS 试题描述 You want to arrange the window of your flower shop in a most pl ...

  4. SGU 104. Little shop of flowers (DP)

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  5. 快速切题 sgu104. Little shop of flowers DP 难度:0

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  6. 动态规划(方案还原):SGU 104 Little shop of flowers

    花店橱窗布置问题 时间限制:3000 ms 问题描述(Problem)    假设你想以最美观的方式布置花店的橱窗,你有F束花,每束花的品种都不一样,同时,你至少有同样数量的花瓶,被按顺序摆成一行.花 ...

  7. [CH5E02] A Little Shop of Flowers

    问题描述 You want to arrange the window of your flower shop in a most pleasant way. You have F bunches o ...

  8. poj1157LITTLE SHOP OF FLOWERS

    Description You want to arrange the window of your flower shop in a most pleasant way. You have F bu ...

  9. POJ 3181 Dollar Dayz(高精度 动态规划)

    题目链接:http://poj.org/problem?id=3181 题目大意:用1,2...K元的硬币,凑成N元的方案数. Sample Input 5 3 Sample Output 5 分析: ...

随机推荐

  1. python类和模块区别,python命名空间

    在python中,类可以提供模块级别之下的命名空间. 如果一个模块写很多函数,某些函数之间共同完成一组功能,用类会看起来更清晰,在调用时候也会更好,对于ide补全有更小范围的限定提示. 类提供 继承 ...

  2. Android输出日志到电脑磁盘

    使用Eclipse查看Log有时候挺恶心的,有些Log ADB会自动的清除,所有有时候导致抓不到有效的Log,把Log保存到文件,然后通过文本查看器查看,感觉好Happy,下面就是脚本文件: adb ...

  3. PHPDragon设计结构

    PHPDragon的设计思路来源至YII框架,可以吐槽作者本人完全copy,但希望在后面,会慢慢的走出一条不同的分支. 1.Dragon.php(DragonBase.php)入口文件,负责程序的自动 ...

  4. Windows最全快捷键

    单独按Windows:显示或隐藏“开始”功能表 Windows+BREAK:显示“系统属性” 对话框 Windows+D:显示桌面 Windows+M:最小化所有窗口 Windows+Shift+M: ...

  5. CentOS7--配置时间和日期

    CentOS7提供三个命令行工具,可用于配置和显示有关系统日期和时间的信息. timedatectl:Linux 7中的新增功能,也是systemd其中的一部分. date:系统时钟,也成为软件时钟, ...

  6. codeforces水题100道 第七题 Codeforces Round #270 A. Design Tutorial: Learn from Math (math)

    题目链接:http://www.codeforces.com/problemset/problem/472/A题意:给你一个数n,将n表示为两个合数(即非素数)的和.C++代码: #include & ...

  7. 从Eclipse转移到IntelliJ IDEA的一点心得

    IntelliJ使用指南—— 深入理解IntelliJ的Web部署逻辑 Intellij IDEA 部署Web项目,解决 404 错误 Intellij IDEA快捷键的使用 本文转载地址 本人使用I ...

  8. IOS设计模式第六篇之适配器设计模式

    版权声明:原创作品,谢绝转载!否则将追究法律责任. 那么怎么使用适配器设计模式呢? 这个之前提到的水平滚动的视图像这样: 为了开始实现他,我们创建一个新的继承与UIView的HorizontalScr ...

  9. 【thinkphp5】使用tp5开发api接口 定义全局异常处理

    1 新建文件夹以及文件 路径: /application/lib/exception/ExceptionHandler.php 并键入以下代码 <?php namespace app\lib\e ...

  10. 正则表达式取querystring

    var s = decodeURIComponent((new RegExp('[?|&]userid=([^&;]+?)(&|#|;|$)').exec(location.h ...