fifth.cc

/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/ #include <fstream>
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/internet-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/applications-module.h" using namespace ns3; NS_LOG_COMPONENT_DEFINE ("FifthScriptExample"); // ===========================================================================
//
// node 0 node 1
// +----------------+ +----------------+
// | ns-3 TCP | | ns-3 TCP |
// +----------------+ +----------------+
// | 10.1.1.1 | | 10.1.1.2 |
// +----------------+ +----------------+
// | point-to-point | | point-to-point |
// +----------------+ +----------------+
// | |
// +---------------------+
// 5 Mbps, 2 ms
//
//
// We want to look at changes in the ns-3 TCP congestion window. We need
// to crank up a flow and hook the CongestionWindow attribute on the socket
// of the sender. Normally one would use an on-off application to generate a
// flow, but this has a couple of problems. First, the socket of the on-off
// application is not created until Application Start time, so we wouldn't be
// able to hook the socket (now) at configuration time. Second, even if we
// could arrange a call after start time, the socket is not public so we
// couldn't get at it.
//
// So, we can cook up a simple version of the on-off application that does what
// we want. On the plus side we don't need all of the complexity of the on-off
// application. On the minus side, we don't have a helper, so we have to get
// a little more involved in the details, but this is trivial.
//
// So first, we create a socket and do the trace connect on it; then we pass
// this socket into the constructor of our simple application which we then
// install in the source node.
// ===========================================================================
//
class MyApp : public Application
{
public: MyApp ();
virtual ~MyApp(); void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate); private:
virtual void StartApplication (void);
virtual void StopApplication (void); void ScheduleTx (void);
void SendPacket (void); Ptr<Socket> m_socket;
Address m_peer;
uint32_t m_packetSize;
uint32_t m_nPackets;
DataRate m_dataRate;
EventId m_sendEvent;
bool m_running;
uint32_t m_packetsSent;
}; MyApp::MyApp ()
: m_socket (0),
m_peer (),
m_packetSize (0),
m_nPackets (0),
m_dataRate (0),
m_sendEvent (),
m_running (false),
m_packetsSent (0)
{
} MyApp::~MyApp()
{
m_socket = 0;
} void
MyApp::Setup (Ptr<Socket> socket, Address address, uint32_t packetSize, uint32_t nPackets, DataRate dataRate)
{
m_socket = socket;
m_peer = address;
m_packetSize = packetSize;
m_nPackets = nPackets;
m_dataRate = dataRate;
} void
MyApp::StartApplication (void)
{
m_running = true;
m_packetsSent = 0;
m_socket->Bind ();
m_socket->Connect (m_peer);
SendPacket ();
} void
MyApp::StopApplication (void)
{
m_running = false; if (m_sendEvent.IsRunning ())
{
Simulator::Cancel (m_sendEvent);
} if (m_socket)
{
m_socket->Close ();
}
} void
MyApp::SendPacket (void)
{
Ptr<Packet> packet = Create<Packet> (m_packetSize);
m_socket->Send (packet); if (++m_packetsSent < m_nPackets)
{
ScheduleTx ();
}
} void
MyApp::ScheduleTx (void)
{
if (m_running)
{
Time tNext (Seconds (m_packetSize * 8 / static_cast<double> (m_dataRate.GetBitRate ())));
m_sendEvent = Simulator::Schedule (tNext, &MyApp::SendPacket, this);
}
} static void
CwndChange (uint32_t oldCwnd, uint32_t newCwnd)
{
NS_LOG_UNCOND (Simulator::Now ().GetSeconds () << "\t" << newCwnd);
} static void
RxDrop (Ptr<const Packet> p)
{
NS_LOG_UNCOND ("RxDrop at " << Simulator::Now ().GetSeconds ());
} int
main (int argc, char *argv[])
{
NodeContainer nodes;
nodes.Create (2); PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));
pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms")); NetDeviceContainer devices;
devices = pointToPoint.Install (nodes); Ptr<RateErrorModel> em = CreateObject<RateErrorModel> ();
em->SetAttribute ("ErrorRate", DoubleValue (0.00001));
devices.Get (1)->SetAttribute ("ReceiveErrorModel", PointerValue (em)); InternetStackHelper stack;
stack.Install (nodes); Ipv4AddressHelper address;
address.SetBase ("10.1.1.0", "255.255.255.252");
Ipv4InterfaceContainer interfaces = address.Assign (devices); uint16_t sinkPort = 8080;
Address sinkAddress (InetSocketAddress (interfaces.GetAddress (1), sinkPort));
PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), sinkPort));
ApplicationContainer sinkApps = packetSinkHelper.Install (nodes.Get (1));
sinkApps.Start (Seconds (0.));
sinkApps.Stop (Seconds (20.)); Ptr<Socket> ns3TcpSocket = Socket::CreateSocket (nodes.Get (0), TcpSocketFactory::GetTypeId ());
ns3TcpSocket->TraceConnectWithoutContext ("CongestionWindow", MakeCallback (&CwndChange)); Ptr<MyApp> app = CreateObject<MyApp> ();
app->Setup (ns3TcpSocket, sinkAddress, 1040, 1000, DataRate ("1Mbps"));
nodes.Get (0)->AddApplication (app);
app->SetStartTime (Seconds (1.));
app->SetStopTime (Seconds (20.)); devices.Get (1)->TraceConnectWithoutContext ("PhyRxDrop", MakeCallback (&RxDrop)); Simulator::Stop (Seconds (20));
Simulator::Run ();
Simulator::Destroy (); return 0;
}

NS3 fifth.cc 拥塞窗口实例的更多相关文章

  1. TCP 滑动窗口和 拥塞窗口

    转http://coolshell.cn/articles/11609.html 滑动窗口 -- 表征发送端和接收端的接收能力 拥塞窗口-- 表征中间设备的传输能力 TCP滑动窗口 需要说明一下,如果 ...

  2. 窗口的子类化与超类化——子类化是窗口实例级别的,超类化是在窗口类(WNDCLASS)级别的

    1. 子类化 理论:子类化是这样一种技术,它允许一个应用程序截获发往另一个窗口的消息.一个应用程序通过截获属于另一个窗口的消息,从而实现增加.监视或者修改那个窗口的缺省行为.子类化是用来改变或者扩展一 ...

  3. UNIX网络编程——TCP—经受时延与nagle算法、滑动窗口、拥塞窗口

    1.经受时延: TCP在接收到数据时并不立即发送ACK,相反,它推迟发送,以便将ACK与需要沿该方向发送的数据一起发送,时延为200ms,超过时延范围,发送确认. 2.nagle算法: 一个TCP连接 ...

  4. cordova插件新的窗口实例打开连接: cordova-plugin-inappbrowser

    1. 添加插件:cordova plugin add cordova-plugin-inappbrowser  : 2. InAppBrowser可以使用新的窗口实例打开连接,提供了地址栏的显示隐藏, ...

  5. tcp 两个重要窗口:滑动窗口 和 拥塞窗口

    一:滑动窗口是接受数据端使用的窗口大小,用来告知发送端接收端的缓存大小,以此可以控制发送端发送数据的大小,从而达到流量控制的目的,对应==>rwnd:接收端窗口(receiver window) ...

  6. TCP的滑动窗口与拥塞窗口

    一.滑动窗口 滑动窗口协议是传输层进行流控的一种措施,接收方通过通告发送方自己的窗口大小,从而控制发送方的发送速度,从而达到防止发送方发送速度过快而导致自己被淹没的目的.   对ACK的再认识,ack ...

  7. TCP的拥塞窗口和快速恢复机制的一些备忘及一点想法

    rwnd(窗口,代表接收端的处理能力).cwnd(拥塞窗口,从发送端看当前网络整体承载能力).ssthresh(快速增长切换成慢速增长的界限值) 1.慢启动,是指数增长(对面确认多少个包,就增加多少) ...

  8. 一文带你掌握【TCP拥塞窗口】原理

    ❝ 关注公众号:高性能架构探索.后台回复[资料],可以免费领取 ❞ 学过网络相关课程的,都知道TCP中,有两个窗口: 滑动窗口(在我们的上一篇文章中有讲),接收方通过通告发送方自己的可以接受缓冲区大小 ...

  9. TCP 拥塞窗口原理

    学过网络相关课程的,都知道TCP中,有两个窗口: 滑动窗口(在我们的上一篇文章中有讲),接收方通过通告发送方自己的可以接受缓冲区大小(这个字段越大说明网络吞吐量越高),从而控制发送方的发送速度. 拥塞 ...

随机推荐

  1. 定时任务,AlarmManager使用

    CoderLt   定时任务,AlarmManager使用 项目需要:实现一个定时提醒的功能 查阅资料知道,需要使用AlarmManager AlarmManager介绍: AlarmManager是 ...

  2. yum && 编译 安装mysql 5.7 多实例

    yum安装 [root@localhost ~]# wget http://repo.mysql.com/mysql57-community-release-el7.rpm [root@localho ...

  3. python中关于不执行if __name__ == '__main__':测试模块的解决

    1.新建测试脚本文件: 2.编辑测试脚本 import unittest import requests import json import HTMLTestRunner ur1 = 'http:/ ...

  4. test examples/test scripts

    //https://www.getpostman.com/docs/v6/postman/scripts/test_examples //Setting an environment variable ...

  5. 弱分类器的进化--Bagging、Boosting、Stacking

    一般来说集成学习可以分为三大类: 用于减少方差的bagging 用于减少偏差的boosting 用于提升预测结果的stacking 一.Bagging(1996) 1.随机森林(1996) RF = ...

  6. 网页中自适应的显示PDF

    PDF格式呢,是一个高大的新式,如何在不同的浏览器中自适应显示,是一个值得研究的问题. 这里说明重点部分:获取浏览器宽高. IE中: document.body.clientWidth ==> ...

  7. python解决matplotlib中文坐标值乱码的问题

    加上这句话即可 plt.rcParams['font.sans-serif']=['SimHei'] 效果:

  8. linux常用命令:find 命令参数详解

    find一些常用参数的一些常用实例和一些具体用法和注意事项. 1.使用name选项: 文件名选项是find命令最常用的选项,要么单独使用该选项,要么和其他选项一起使用.  可以使用某种文件名模式来匹配 ...

  9. 如何向GLSL中传入多个纹理

    http://blog.csdn.net/huawenguang/article/details/41245871 如何向GLSL中传入多个纹理 这几天在研究如何实现用GLSL对多个纹理进行融合处理, ...

  10. 从JavaWeb的角度认识Nginx

    作为一名JavaWeb方向程序员,更多的是写服务器后台代码,但是俗话说,不想当架构师的程序员不是好程序员,我们要对并发.负载等词汇进行深入探索. 一.重新认识Tomcat Tomcat属于轻量级的We ...