数据挖掘十大经典算法[0]-K-Means算法
K-Means算法的输入N,K和一个size为N的向量组vector.输出K个两两互不相交的向量组.其本质是将给定的向量组划分成K个类别,使得同类别的向量相似度比较大,而不同类别的向量之间的相似度较小.
比如以下这个图,人肉眼能看出有四个点团,但计算机不知道,为了让计算机明白这一点,可以将点的坐标提取到向量组中,而向量之间的相似度定义为点之间的距离的相反数或者倒数.从而将这些点分开.
实现过程:
(1)从n个数据对象任意选择k个对象作为初始聚类中心;
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离,并根据最小距离重新对相应对象进行划分;
(3)重新计算每个(有变化)聚类的均值(中心对象);
(4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止,如果条件不满足则回到步骤(2).
实际应用中的问题:
事实上,我是一个做ACM的选手,所以我比较感兴趣的是K-Means能否求得一个最优解.对于这样一个问题:从N个点取出K个作为核心,定义两个向量之间的相似度函数f(vector1,vector2),使得所有点与其所对应的核心的相似度之和最大.然而事实让我大失所望,K-Means算法对种子点的选取十分敏感,不同的种子会导致不同的解.
#include<math.h>
#include<stdio.h>
#include<string.h>
#define Convergence (fabs(last-cur)<1e-8)
#define dist(a,b) (sqrt((x[a]-px[b])*(x[a]-px[b])+(y[a]-py[b])*(y[a]-py[b])))
int x[],y[],qx[],qy[],px[],py[],assign[];
int main()
{
freopen("data.txt","r",stdin);
FILE *fp=fopen("output.txt","w");
int N,K,i,j,k;
double ave=,MIN=1e15;
scanf("%d%d",&N,&K);
for (i=;i<=N;i++) scanf("%d%d",&x[i],&y[i]);
for (int asd=;asd<N;asd++)
{
printf("Executing case #%d\n",asd);
if (asd) printf("Current Average:%.6lf\n",ave/asd);
printf("Current Minimize:%.6lf\n",MIN);
printf("----------------------------------------\n");
fprintf(fp,"Executing case #%d\n",asd);
if (asd) fprintf(fp,"Current Average:%.6lf\n",ave/asd);
fprintf(fp,"Current Minimize:%.6lf\n",MIN);
fprintf(fp,"----------------------------------------\n");
for (i=;i<=K;i++)
{
px[i]=x[(i+asd)%N+];
py[i]=y[(i+asd)%N+];
}
double last=1e15,cur=;
while (!Convergence)
{
printf("%.6lf\n",last);
last=cur;
for (i=;i<=N;i++)
{
double Min=1e15;
int v;
for (j=;j<=K;j++)
{
double d=dist(i,j);
if (d<Min)
{
Min=d;
v=j;
}
}
assign[i]=v;
}
for (i=;i<=K;i++)
{
int cnt=;
for (j=;j<=N;j++)
if (assign[j]==i)
{
qx[++cnt]=x[j];
qy[ cnt ]=y[j];
}
double Min=1e15;
int v;
for (j=;j<=cnt;j++)
{
double tmp=;
for (k=;k<=cnt;k++)
tmp+=(sqrt((qx[j]-qx[k])*(qx[j]-qx[k])+(qy[j]-qy[k])*(qy[j]-qy[k])));
if (tmp<Min)
{
Min=tmp;
v=j;
}
}
px[i]=qx[v];
py[i]=qy[v];
}
cur=;
for (i=;i<=N;i++) cur+=dist(i,assign[i]);
}
ave+=cur;
MIN=MIN<cur ? MIN:cur;
}
printf("Total average:%.6lf\n",ave/N);
printf("Total MIN:%.6lf\n",MIN);
fprintf(fp,"Total average:%.6lf\n",ave/N);
fprintf(fp,"Total MIN:%.6lf\n",MIN);
return ;
}
运行结果如图所示:
.bmp)
另一个问题是算法的收敛速度,重新算了一下,结果如下图所示:

这个结果让我大吃一惊啊,每次迭代之后更新量都很小,而且最终的值(9259914.963696)跟第一个有意义的值(10352922.175732)相差并不是很多.后来我仔细想了一下,应该是跟输入数据有关,我的数据完全是在一定范围内随机生成的,分布比较均匀,所以即使随便选也可以得到相当不错的效果,这是我生成数据的程序:
program makedata;
var i,N,K:longint;
begin
assign(output,'data.txt');
rewrite(output);
randomize;
N:=random();
K:=random();
writeln(N,' ',K);
for i:= to N do
writeln(random(),' ',random());
close(output);
end.
于是我重新写了makedada程序,想法是先随机生成K个核心,再在其周围生成其他的点:
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<stdlib.h>
int main()
{
srand(unsigned(time()));
freopen("data.txt","w",stdout);
printf("15000 15\n");
for (int i=;i<=;i++)
{
int X=rand()%,Y=rand()%;
for (int j=;j<=;j++)
{
int dx=rand()%,dy=rand()%;
if (rand()&) dx*=-;
if (rand()&) dy*=-;
printf("%d %d\n",X+dx,Y+dy);
}
}
return ;
}
再重新运行一下,得到如下结果:
.bmp)
可以看出,收敛的速度还是可以的,而且最终结果几乎只有最初解得一半.
初除此之外,还有一个重要问题,核心数K是作为输入给定的,而在实际应用中是无法预知的.对此可以用ISODATA算法作为补充.
数据挖掘十大经典算法[0]-K-Means算法的更多相关文章
- 数据挖掘十大经典算法(5) 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Lat ...
- ICDM评选:数据挖掘十大经典算法
原文地址:http://blog.csdn.net/aladdina/article/details/4141177 国际权威的学术组织the IEEE International Conferenc ...
- 数据挖掘十大经典算法--CART: 分类与回归树
一.决策树的类型 在数据挖掘中,决策树主要有两种类型: 分类树 的输出是样本的类标. 回归树 的输出是一个实数 (比如房子的价格,病人呆在医院的时间等). 术语分类和回归树 (CART) 包括了上述 ...
- 数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种, ...
- 数据挖掘领域十大经典算法之—C4.5算法(超详细附代码)
https://blog.csdn.net/fuqiuai/article/details/79456971 相关文章: 数据挖掘领域十大经典算法之—K-Means算法(超详细附代码) ...
- 数据挖掘十大算法--K-均值聚类算法
一.相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:怎样定量计算两个可比較元素间的相异度.用通俗的话说.相异度就是两个东西区别有多大.比如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能 ...
- 【十大经典数据挖掘算法】k
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
随机推荐
- Stanford机器学习---第七讲. 机器学习系统设计
原文:http://blog.csdn.net/abcjennifer/article/details/7834256 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- [官方教程] [ES4封装教程]2.使用 Easy Sysprep v4 封装 Windows XP
(一)备份当前操作系统封装的第一步,其实是备份当前安装好的操作系统.避免我们在之后的步骤中出现问题,以至于还要重新安装操作系统,浪费时间精力.系统备份想必大家都会.对于WinXP而言,建议使用Ghos ...
- TCP/IP协议原理【转载】
前述 各种L2数据网具有不同的通信协议与帧结构,其网络节点设备可以是各种类型的数据交换机(X.25.FR.Ethernet和ATM等分组交换机):而L3数据网(IP网或internet) ...
- Python 命令详解
1. 新建一个 django-project django-admin.py startproject project-name 一个 project 一般为一个项目 2. 新建 app python ...
- 如何选择Html.RenderPartial和Html.RenderAction
Html.RenderPartial与Html.RenderAction这两个方法都是用来在界面上嵌入用户控件的. Html.RenderPartial是直接将用户控件嵌入到界面上: <%Htm ...
- iOS tableview 选中Cell后的背景颜色和文字颜色
做下记录,备忘 改文字颜色其实是UILabel的属性,改背景颜色是cell的属性,都和tableview无关. cell.textLabel.textColor = BAR_COLOR; cell.t ...
- mysql5.6 timestamp
1.timestamp 默认值 CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP 在创建新记录和修改现有记录的时候都对这个数据列刷新 CURRENT_TIME ...
- POJ 3977
Subset Time Limit: 30000MS Memory Limit: 65536K Total Submissions: 1373 Accepted: 228 Descriptio ...
- Java程序编译和运行的过程
Java整个编译以及运行的过程相当繁琐,本文通过一个简单的程序来简单的说明整个流程. 如下图,Java程序从源文件创建到程序运行要经过两大步骤:1.源文件由编译器编译成字节码(ByteCode) 2 ...
- Could not create the view: An unexpected exception was thrown. 电脑突然断电,myeclipse非正常关闭,出现错误
电脑突然断电,myeclipse非正常关闭,“Package Explorer”非正常显示,出现错误“Could not create the view: An unexpected exceptio ...