B树

即二叉搜索树:

1.所有非叶子结点至多拥有两个儿子(Left和Right);

2.所有结点存储一个关键字;

3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

如:

B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;

否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入

右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树

的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构

(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

如:

但B树在经过多次插入与删除后,有可能导致不同的结构:

右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的

树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就

是所谓的“平衡”问题;

实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树

结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的

策略;

B-树

是一种多路搜索树(并不是二叉的):

1.定义任意非叶子结点最多只有M个儿子;且M>2;

2.根结点的儿子数为[2, M];

3.除根结点以外的非叶子结点的儿子数为[M/2, M];

4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

5.非叶子结点的关键字个数=指向儿子的指针个数-1;

6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的

子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

8.所有叶子结点位于同一层;

如:(M=3)

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果

命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为

空,或已经是叶子结点;

B-树的特性:

1.关键字集合分布在整颗树中;

2.任何一个关键字出现且只出现在一个结点中;

3.搜索有可能在非叶子结点结束;

4.其搜索性能等价于在关键字全集内做一次二分查找;

5.自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少

利用率,其最底搜索性能为:

其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占

M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

B+树

B+树是B-树的变体,也是一种多路搜索树:

1.其定义基本与B-树同,除了:

2.非叶子结点的子树指针与关键字个数相同;

3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树

(B-树是开区间);

5.为所有叶子结点增加一个链指针;

6.所有关键字都在叶子结点出现;

如:(M=3)

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在

非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:

1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好

是有序的;

2.不可能在非叶子结点命中;

3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储

(关键字)数据的数据层;

4.更适合文件索引系统;

B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3

(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据

复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父

结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分

数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字

(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之

间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

小结

B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于

走右结点;

B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键

字范围的子结点;

所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点

中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率

从1/2提高到2/3;B

B,B+,B-,B*树的更多相关文章

  1. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

  2. ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单

    前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...

  3. 再讲IQueryable<T>,揭开表达式树的神秘面纱

    接上篇<先说IEnumerable,我们每天用的foreach你真的懂它吗?> 最近园子里定制自己的orm那是一个风生水起,感觉不整个自己的orm都不好意思继续混博客园了(开个玩笑).那么 ...

  4. HDU1671——前缀树的一点感触

    题目http://acm.hdu.edu.cn/showproblem.php?pid=1671 题目本身不难,一棵前缀树OK,但是前两次提交都没有成功. 第一次Memory Limit Exceed ...

  5. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  6. [C#] C# 知识回顾 - 表达式树 Expression Trees

    C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...

  7. bzoj3207--Hash+主席树

    题目大意: 给定一个n个数的序列和m个询问(n,m<=100000)和k,每个询问包含k+2个数字:l,r,b[1],b[2]...b[k],要求输出b[1]~b[k]在[l,r]中是否出现. ...

  8. bzoj1901--树状数组套主席树

    树状数组套主席树模板题... 题目大意: 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[ ...

  9. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  10. jquery-treegrid树状表格的使用(.Net平台)

    上一篇介绍了DataTable,这一篇在DT的基础之上再使用jquery的一款插件:treegrid,官网地址:http://maxazan.github.io/jquery-treegrid/ 一. ...

随机推荐

  1. Fluent NHibernate关系映射

    1.好处:Fluent NHibernate让你不再需要去写NHibernate的标准映射文件(.hbm.xml), 方便了我们的代码重构,提供了代码的易读性,并精简了项目代码 实现: (1).首先我 ...

  2. 字符串去掉空格 trim()方法

    jquery库提供了$.trim()方法,能直接用, 但没用库时FF里有效果,IE里就没实现, 解决办法:用正则替换 方法: function trimStr(str){return str.repl ...

  3. javascript中数组Array的方法

    一.常用方法(push,pop,unshift,shift,join)push pop栈方法,后进先出var a =[1,2,3];console.log(a.push(40)); //4 返回数组的 ...

  4. grunt安装

    随着node的流行,各种后台的技术应用到前端,依赖注入.自动化测试.构建等等. 本篇就介绍下如何使用Grunt进行构建. grunt安装 由于grunt依赖于nodejs,因此需要先安装nodejs. ...

  5. Nginx下用webbench进行压力测试

    在运维工作中,压力测试是一项非常重要的工作.比如在一个网站上线之前,能承受多大访问量.在大访问量情况下性能怎样,这些数据指标好坏将会直接影响用户体验. 但是,在压力测试中存在一个共性,那就是压力测试的 ...

  6. NABCD模型需求分析

    仓库管理系统的NABCD模型 N-Need仓库管理是与我们日常生活息息相关的问题,随着改革开放的不断深入,经济飞速的发展,企业要想生存.发展,要想在激烈的市场竞争中立于不败之地,没有现代化的管理是万万 ...

  7. iOS边练边学--GCD的基本使用、GCD各种队列、GCD线程间通信、GCD常用函数、GCD迭代以及GCD队列组

    一.GCD的基本使用 <1>GCD简介 什么是GCD 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数   GCD的优势 G ...

  8. fluery算法

    #include<stdio.h> #include<string.h> struct stack { int top; ]; }s; ][]; void dfs(int x) ...

  9. Java-clone浅/深复制

    Object中的clone方法为复制当前对象 protected native Object clone() throws CloneNotSupportedException; 想要使用这个方法需要 ...

  10. UTL_FILE详解

    包UTL_FILE 提供了在操作系统层面上对文件系统中文件的读写功能.非超级用户在使用包UTL_FILE中任何函数或存储过程前必须由超级用户授予在这个包上的EXECUTE权限.例如:我们使用下列命令对 ...