分析循环 Analysis of Loops-------geeksforgeeks 翻译
之前我们讨论了渐进分析,最佳最坏平均情况的分析以及渐进符号。在这一篇中我们分析一下迭代的简单程序。
1. O(1):
如果程序中没有包含任何的循环,递归或者任何的非常数时间的函数,我们就说这个程序的时间复杂度为O(1)。例如简单的swap()函数就是O(1)
// Here c is a constant
for (int i = ; i <= c; i++) {
// some O(1) expressions
}
这个程序也是O(1)因为C是常数。所以整个程序可以再常数时间内完成。
2.O(n):
如果循环计数器用一个常数来减少或增加。那我们就说这个循环的时间复杂度是O(n)
// Here c is a positive integer constant
for (int i = ; i <= n; i += c) {
// some O(1) expressions
} for (int i = n; i > ; i -= c) {
// some O(1) expressions
}
(如果C=1,每个for loop要运行n次O(1) expressions)
3.O(nc):
嵌套循环的时间复杂度等于最里面的程序的运行次数。
for (int i = ; i <=n; i += c) {
for (int j = ; j <=n; j += c) {
// some O(1) expressions
}
} for (int i = n; i > ; i += c) {
for (int j = i+; j <=n; j += c) {
// some O(1) expressions
}
这两个嵌套循环的时间复杂度都是O(n2).选择排序和插入排序的时间复杂度都是O(n2)。
4.O(logN):
如果循环计数器乘以或除以一个常数来减少或增加。那我们就说这个循环的时间复杂度是O(logn)
for (int i = ; i <=n; i *= c) {
// some O(1) expressions
}
for (int i = n; i > ; i /= c) {
// some O(1) expressions
}
二分查找就是O(logn) 的时间复杂度。
5.O(loglogn)
如果循环计数器用一个指数来减少或增加。那我们就说这个循环的时间复杂度是O(loglogn)
// Here c is a constant greater than 1
for (int i = ; i <=n; i = pow(i, c)) {
// some O(1) expressions
}
//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i > ; i = fun(i)) {
// some O(1) expressions
}
如何求一些循环组合的时间复杂度?
当出现一些连续的循环时,我们通过把每一个循环的时间复杂度加到一起来求总体的时间复杂度。
for (int i = ; i <=m; i += c) {
// some O(1) expressions
}
for (int i = ; i <=n; i += c) {
// some O(1) expressions
}
Time complexity of above code is O(m) + O(n) which is O(m+n)
If m == n, the time complexity becomes O(2n) which is O(n).
当循环中有很多if else 的语句时,怎么计算时间复杂度?
我们之前讨论过,最坏的时间复杂度才是最有用的信息。所以我们要考虑最坏的情况,也是就if-else的条件下,最多的语句会执行。例如线性搜索,我们会主要考虑要找的元素在最后一个或者不在数组中。(这样就会执行最多次数的语句)
如果程序有太多的if-else 语句,我们可以通过忽略if - else 语句或者其他的复杂句子来找到上限。
原文链接:
http://www.geeksforgeeks.org/analysis-of-algorithms-set-4-analysis-of-loops/
翻译:
Rui
分析循环 Analysis of Loops-------geeksforgeeks 翻译的更多相关文章
- x264源代码简单分析:宏块分析(Analysis)部分-帧间宏块(Inter)
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- x264源代码简单分析:宏块分析(Analysis)部分-帧内宏块(Intra)
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- 数据关联分析 association analysis (Aprior算法,python代码)
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...
- C++ 11 学习2:空指针(nullptr) 和 基于范围的for循环(Range-based for loops)
3.空指针(nullptr) 早在 1972 年,C语言诞生的初期,常数0带有常数及空指针的双重身分. C 使用 preprocessor macroNULL 表示空指针, 让 NULL 及 0 分别 ...
- Spring IOC 容器源码分析 - 循环依赖的解决办法
1. 简介 本文,我们来看一下 Spring 是如何解决循环依赖问题的.在本篇文章中,我会首先向大家介绍一下什么是循环依赖.然后,进入源码分析阶段.为了更好的说明 Spring 解决循环依赖的办法,我 ...
- 生存分析(survival analysis)
一.生存分析(survival analysis)的定义 生存分析:对一个或多个非负随机变量进行统计推断,研究生存现象和响应时间数据及其统计规律的一门学科. 生存分析:既考虑结果又考虑生存时间的一种统 ...
- 平摊分析 Amortized Analysis ------geeksforgeeks翻译
当偶尔一切操作很花的时间很慢,而大多数操作的时间都很快的时候,平摊分析的方法就很很好用了.在平摊分析中,我们分析一串操作并且可以得到最坏情况下的平均时间复杂度.例如hash table, disjoi ...
- 算法最坏,平均和最佳情况(Worst, Average and Best Cases)-------geeksforgeeks 翻译
最坏,平均和最佳运行时间(Worst, Average and Best Cases) 在上一篇文章中,我们讨论到了渐进分析可以解决分析算法的问题,那么在这一篇中,我们用线性搜索来举例说明一下如何用渐 ...
- 算法分析 Analysis of Algorithms -------GeekforGeeker 翻译
算法分析 Analysis of Algorithms 为什么要做性能分析?Why performance analysis? 在计算机领域有很多重要的因素我们要考虑 比如用户友好度,模块化, 安全性 ...
随机推荐
- Treap树的基础知识
原文 其它较好的的介绍:堆排序 AVL树 树堆,在数据结构中也称Treap(事实上在国内OI界常称为Traep,与之同理的还有"Tarjan神犇发明的"Spaly),是指有一个随 ...
- PHP学习笔记:等比例缩放图片
直接上代码,imgzip($src,$newwid,$newhei)这个函数带进去的分别是原图片.缩放要求的宽度.缩放的长度.代码都备注了,不懂可以留言哈哈 <?php //压缩图片 缩略图 $ ...
- Linux 安装 Nginx
1. nginx的安装: 开始学习如何安装nginx,首先安装必要的软件: # yum install libtool # yum install -y gcc-c++ # yum install z ...
- windows 7文件误删shift+delete后找回
昨天要还电脑了,结果脑子一抽,某个目录还没拷贝,shift+delete了整个目录,删除到一半,完了...我的源码都在里面还没出来啊...这TMD要命啊... 赶紧搜了一把,windows文件误删恢复 ...
- ORACLE 中ROWNUM用法总结!
ORACLE 中ROWNUM用法总结! 对于 Oracle 的 rownum 问题,很多资料都说不支持>,>=,=,between...and,只能用以上符号(<.<=.!=) ...
- 控制台(Console)报错:java.io.IOException: Broken pipe
控制台(Console)输出: java.io.IOException: Broken pipe at sun.nio.ch.FileDispatcherImpl.write0(Native Meth ...
- android 不一样的学习记录
http://blog.csdn.net/innost/article/details/48228651 ( 深入理解Android 之 Gradle) 介绍:这篇文章篇幅较长,需要有时间并足够有耐心 ...
- Linux0.11内核剖析--初始化程序(init)
1.概述 在内核源代码的 init/目录中只有一个 main.c 文件. 系统在执行完 boot/目录中的 head.s 程序后就会将执行权交给 main.c.该程序虽然不长,但却包括了内核初始化的所 ...
- Struts2(十二)使用验证框架验证数据较验
一.数据验证 1.1.为什么要进行数据验证 对数据的合法性进行检查,只允许合法的数据进入应用程序 1.2.在哪里实现数据验证 客户端验证: 数据提交前在客户端验证 可使用JavaScript或者JQu ...
- iOS 你将会遇到的
1.解释ARC原理,ARC引入之后,iOS增加了几个修饰符,分别是什么?并解释何时应该使用? 2.给你一个可变数组aMutableArray,请写出你认为较好的算法代码. 3.UITableView是 ...