https://www.luogu.org/problemnew/show/P4374

一看这道题就是一个妙题,然后题解什么树链剖分...珂朵莉树...

还不如并查集来的实在!我们知道并查集本来就是路径压缩的。

比如这题可以树上的路径压缩!! 直接跳到father,就省去大量上跳的过程(因为我们已经计算过了,不存在最优了)。

下面给出题面:

给出n个节点的树,现在有m条边可供替换,对于树上每一条边删除,

为了保证整颗树强连通,需要从给出的边中选出一条添加上,

求对于删除的每一条树边,最小添加上的给出的边的长度。

对于100%的数据 $n \leq 5\times 10^4 $

做法的话就是首先建这棵树然后把每一条边记录它的编号i然后LCA预处理都会的吧

按照边权排序然后枚举这条边可以完成哪些边删除后的替代作用,显然的一个贪心,前面枚举的边权小如果被小边权选过了

那么后面的边即使可以选上也一定比前面的边权大,所以只要可行,我们就使用并查集把这条边直接折叠掉,下次不做遍历。

对于每一条边的答案存在它的末端,可以比较方便处理。暴力找不断按照father跳到lca及以上就行。

code :

# include <cstdio>
# include <algorithm>
using namespace std;
const int N=5e4+;
struct rec{ int u,v,w; }e[N];
struct Edg{ int pre,to,id; }a[N<<];
int n,m,tot;
int dep[N],g[N][],f[N],head[N],arc[N],ans[N];
inline int read()
{
int X=,w=; char c=;
while(c<''||c>'') {w|=c=='-';c=getchar();}
while(c>=''&&c<='') X=(X<<)+(X<<)+(c^),c=getchar();
return w?-X:X;
}
void swap(int &x,int &y){int t=x;x=y;y=t;}
void write(int x)
{
if (x==-) { putchar('-'); putchar(''); return;}
if (x>) write(x/);
putchar(x%+'');
}
void adde(int id,int u,int v)
{
a[++tot].pre=head[u];
a[tot].to=v;
a[tot].id=id;
head[u]=tot;
}
int father(int x)
{
if (f[x]==x) return x;
return f[x]=father(f[x]);
}
bool cmp(rec aa,rec bb){return aa.w<bb.w;}
void dfs(int u,int fath)
{
g[u][]=fath; dep[u]=dep[fath]+;
for (int i=head[u];i;i=a[i].pre) {
int v=a[i].to; if (v==fath) continue;
arc[a[i].id]=v;
dfs(v,u);
}
}
void init()
{
for (int j=;j<=;j++)
for (int i=;i<=n;i++)
g[i][j]=g[g[i][j-]][j-];
}
int lca(int u,int v)
{
if (dep[u]<dep[v]) swap(u,v);
for (int i=;i>=;i--)
if (dep[g[u][i]]>=dep[v]) u=g[u][i];
if (u==v) return u;
for (int i=;i>=;i--)
if (g[u][i]!=g[v][i]) u=g[u][i],v=g[v][i];
return g[u][];
}
int main()
{
n=read();m=read();
int u,v;
for (int i=;i<n;i++) {
u=read();v=read();
adde(i,u,v); adde(i,v,u);
}
dfs(,); init();
for (int i=;i<=m;i++)
e[i]=(rec){read(),read(),read()};
sort(e+,e++m,cmp);
for (int i=;i<=n;i++) f[i]=i,ans[i]=-;
for (int i=;i<=m;i++) {
int w=e[i].w,u=e[i].u,v=e[i].v,Lca=lca(u,v);
for (u=father(u);dep[u]>dep[Lca];u=father(g[u][]))
ans[u]=w,f[u]=g[u][];
for (v=father(v);dep[v]>dep[Lca];v=father(g[v][]))
ans[v]=w,f[v]=g[v][];
}
for (int i=;i<n;i++) write(ans[arc[i]]),putchar('\n');
return ;
}

[并查集+LCA USACO18OPEN ] Disruption的更多相关文章

  1. hdu 2874 Connections between cities (并查集+LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  2. hdu6074[并查集+LCA+思维] 2017多校4

    看了标答感觉思路清晰了许多,用并查集来维护全联通块的点数和边权和. 用另一个up[]数组(也是并查集)来保证每条边不会被重复附权值,这样我们只要将询问按权值从小到大排序,一定能的到最小的边权和与联通块 ...

  3. Gym 100814C Connecting Graph 并查集+LCA

    Description standard input/output Statements Alex is known to be very clever, but Walter does not be ...

  4. Network-POJ3694并查集+LCA

    Network Time Limit: 5000MS   Memory Limit: 65536K       Description A network administrator manages ...

  5. Mobile Phone Network CodeForces - 1023F(并查集lca+修改环)

    题意: 就是有几个点,你掌控了几条路,你的商业对手也掌控了几条路,然后你想让游客都把你的所有路都走完,那么你就有钱了,但你又想挣的钱最多,真是的过分..哈哈 游客肯定要对比一下你的对手的路 看看那个便 ...

  6. HDU6074 Phone Call (并查集 LCA)

    Phone Call Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Tota ...

  7. 习题:过路费(kruskal+并查集+LCA)

    过路费  [问题描述]在某个遥远的国家里,有 n 个城市.编号为 1,2,3,…,n.这个国家的政府修 建了 m 条双向道路,每条道路连接着两个城市.政府规定从城市 S 到城市 T 需 要收取的过路费 ...

  8. BZOJ 4668 冷战(按秩合并并查集+LCA)

    4668: 冷战 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 627  Solved: 303[Submit][Status][Discuss] D ...

  9. [CSP-S模拟测试]:Dash Speed(线段树+并查集+LCA)

    题目描述 比特山是比特镇的飙车圣地.在比特山上一共有$n$个广场,编号依次为$1$到$n$,这些广场之间通过$n−1$条双向车道直接或间接地连接在一起,形成了一棵树的结构. 因为每条车道的修建时间以及 ...

随机推荐

  1. mysql 常用的几个函数

    IF 函数 语法:`IF`(expr1,expr2,expr3); 当expr1为ture时,值为expr2,当expr1为false时,值为expr3. 如: IFNULL 函数 语法:IFNULL ...

  2. Python基础(上)

    前言 正式开始Python之旅,主要学习内容专注在爬虫和人工智能领域,如Web开发之类将跳过不研究. Python的意思是蟒蛇,源于作者Guido van Rossum(龟叔)喜欢的一部电视剧.所以现 ...

  3. Centos7下关于系统用户密码规则-运维笔记

    针对Centos7下的系统用户的密码规则复杂度的设置,处于安全考虑,说明如下: 一.设置密码规则 1)密码长度.有效期 /etc/login.defs文件是当创建用户时的一些规划,比如创建用户时,是否 ...

  4. Oracle数据库重做日志及归档日志的工作原理说明

    Oracle数据库重做日志及归档日志的工作原理: lgwr进程将redo log buffer中的重做数据写入到redo log中,此时的redo log分组,每当一个redo log group写满 ...

  5. Linux下部署SSH登录时的二次身份验证环境记录(利用Google Authenticator)

    一般来说,使用ssh远程登录服务器,只需要输入账号和密码,显然这种方式不是很安全.为了安全着想,可以使用GoogleAuthenticator(谷歌身份验证器),以便在账号和密码之间再增加一个验证码, ...

  6. LVM基础详细说明及动态扩容lvm逻辑卷的操作记录

    LVM概念:---------------------------------------------------------------------------------------------- ...

  7. M1/M2阶段总结

    之前提问的博客 问题解答 问题 1 关于代码复审,复审者是否应该参与编码?如果复审者也参与编码的话,那么难免任务量较多,但如果不参与编码的话,工作分配的似乎不太均衡. 我们的团队项目在M1和M2阶段没 ...

  8. 【Beta阶段】第八次Scrum Meeting!

    每日任务内容: 本次会议为第八次Scrum Meeting会议~ 由于本次会议项目经理身体不适,未参与会议,会议精神由卤蛋代为转达,其他同学一起参与了会议 队员 昨日完成任务 明日要完成任务 刘乾 今 ...

  9. Linux内核分析作业第七周

    一. 预处理.编译.链接 gcc hello.c -o hello. gcc编译源代码生成最终可执行的二进制程序,GCC后台隐含执行了四个阶段步骤. 预处理 → 编译 → 汇编 → 链接 预处理:编译 ...

  10. 《Linux内核设计与分析》第四章读书笔记

    <内核设计与实现>第四章读书笔记 第四章:进程调度 进程(操作系统)程序的运行态表现形式. 进程调度程序,它是确保进程能有效工作的一个内核子系统. 调度程序负责决定将哪个进程投入运行,何时 ...