pytorch写一个LeNet网络
我们先介绍下pytorch中的cnn网络
学过深度卷积网络的应该都非常熟悉这张demo图(LeNet):

先不管怎么训练,我们必须先构建出一个CNN网络,很快我们写了一段关于这个LeNet的代码,并进行注释:
# coding=utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable class Net(nn.Module):
# 定义Net的初始化函数,这个函数定义了该神经网络的基本结构
def __init__(self):
super(Net, self).__init__() # 复制并使用Net的父类的初始化方法,即先运行nn.Module的初始化函数
self.conv1 = nn.Conv2d(1, 6, 5) # 定义conv1函数的是图像卷积函数:输入为图像(1个频道,即灰度图),输出为 6张特征图, 卷积核为5x5正方形
self.conv2 = nn.Conv2d(6, 16, 5) # 定义conv2函数的是图像卷积函数:输入为6张特征图,输出为16张特征图, 卷积核为5x5正方形
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 定义fc1(fullconnect)全连接函数1为线性函数:y = Wx + b,并将16*5*5个节点连接到120个节点上。
self.fc2 = nn.Linear(120, 84) # 定义fc2(fullconnect)全连接函数2为线性函数:y = Wx + b,并将120个节点连接到84个节点上。
self.fc3 = nn.Linear(84, 10) # 定义fc3(fullconnect)全连接函数3为线性函数:y = Wx + b,并将84个节点连接到10个节点上。 # 定义该神经网络的向前传播函数,该函数必须定义,一旦定义成功,向后传播函数也会自动生成(autograd)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # 输入x经过卷积conv1之后,经过激活函数ReLU,使用2x2的窗口进行最大池化Max pooling,然后更新到x。
x = F.max_pool2d(F.relu(self.conv2(x)), 2) # 输入x经过卷积conv2之后,经过激活函数ReLU,使用2x2的窗口进行最大池化Max pooling,然后更新到x。
x = x.view(-1, self.num_flat_features(x)) # view函数将张量x变形成一维的向量形式,总特征数并不改变,为接下来的全连接作准备。
x = F.relu(self.fc1(x)) # 输入x经过全连接1,再经过ReLU激活函数,然后更新x
x = F.relu(self.fc2(x)) # 输入x经过全连接2,再经过ReLU激活函数,然后更新x
x = self.fc3(x) # 输入x经过全连接3,然后更新x
return x # 使用num_flat_features函数计算张量x的总特征量(把每个数字都看出是一个特征,即特征总量),比如x是4*2*2的张量,那么它的特征总量就是16。
def num_flat_features(self, x):
size = x.size()[1:] # 这里为什么要使用[1:],是因为pytorch只接受批输入,也就是说一次性输入好几张图片,那么输入数据张量的维度自然上升到了4维。【1:】让我们把注意力放在后3维上面
num_features = 1
for s in size:
num_features *= s
return num_features net = Net() # 以下代码是为了看一下我们需要训练的参数的数量
print (net)
params = list(net.parameters()) k = 0
for i in params:
l = 1
print ("该层的结构:" + str(list(i.size())))
for j in i.size():
l *= j
print ("参数和:" + str(l))
k = k + l print ("总参数和:" + str(k))
注意:torch.nn只接受mini-batch的输入,也就是说我们输入的时候是必须是好几张图片同时输入。
例如:nn. Conv2d 允许输入4维的Tensor:n个样本 x n个色彩频道 x 高度 x 宽度。
这段代码运行 (运行于pytorch0.4版本) 效果如下:
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
该层的结构:[6, 1, 5, 5]
参数和:150
该层的结构:[6]
参数和:6
该层的结构:[16, 6, 5, 5]
参数和:2400
该层的结构:[16]
参数和:16
该层的结构:[120, 400]
参数和:48000
该层的结构:[120]
参数和:120
该层的结构:[84, 120]
参数和:10080
该层的结构:[84]
参数和:84
该层的结构:[10, 84]
参数和:840
该层的结构:[10]
参数和:10
总参数和:61706
参考链接:https://www.jianshu.com/p/cde4a33fa129
pytorch写一个LeNet网络的更多相关文章
- 自己动手写一个iOS 网络请求库的三部曲[转]
代码示例:https://github.com/johnlui/Swift-On-iOS/blob/master/BuildYourHTTPRequestLibrary 开源项目:Pitaya,适合大 ...
- 07_利用pytorch的nn工具箱实现LeNet网络
07_利用pytorch的nn工具箱实现LeNet网络 目录 一.引言 二.定义网络 三.损失函数 四.优化器 五.数据加载和预处理 六.Hub模块简介 七.总结 pytorch完整教程目录:http ...
- 网络编程—【自己动手】用C语言写一个基于服务器和客户端(TCP)!
如果想要自己写一个服务器和客户端,我们需要掌握一定的网络编程技术,个人认为,网络编程中最关键的就是这个东西--socket(套接字). socket(套接字):简单来讲,socket就是用于描述IP地 ...
- 1、pytorch写的第一个Linear模型(原始版,不调用nn.Modules模块)
参考: https://github.com/Iallen520/lhy_DL_Hw/blob/master/PyTorch_Introduction.ipynb 模拟一个回归模型,y = X * w ...
- 如何使用 libtorch 实现 LeNet 网络?
如何使用 libtorch 实现 LeNet 网络? LeNet 网络论文地址: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
- 基于LeNet网络的中文验证码识别
基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...
- Pytorch写CNN
用Pytorch写了两个CNN网络,数据集用的是FashionMNIST.其中CNN_1只有一个卷积层.一个全连接层,CNN_2有两个卷积层.一个全连接层,但训练完之后的准确率两者差不多,且CNN_1 ...
- 如何写一个简单的http服务器
最近几天用C++写了一个简单的HTTP服务器,作为学习网络编程和Linux环境编程的练手项目,这篇文章记录我在写一个HTTP服务器过程中遇到的问题和学习到的知识. 服务器的源代码放在Github. H ...
- 一起写一个JSON解析器
[本篇博文会介绍JSON解析的原理与实现,并一步一步写出来一个简单但实用的JSON解析器,项目地址:SimpleJSON.希望通过这篇博文,能让我们以后与JSON打交道时更加得心应手.由于个人水平有限 ...
随机推荐
- CentOS升级glibc-2.14
升级glibc-2.14用到的rpm https://pan.baidu.com/s/1v-Uk579TGM6498cExst6ow 先要安装gcc yum -y install gcc 执行: rp ...
- 选择结构if
1.if语句 if语句是指如果满足某种条件,就进行某种处理.例如,小明妈妈跟小明说“如果你考试得了100分,星期天就带你去游乐场玩”.这句话可以通过下面的一段伪代码来描述. 如果小明考试得了100分 ...
- 【译】理解JavaScript闭包——新手指南
闭包是JavaScript中一个基本的概念,每个JavaScript开发者都应该知道和理解的.然而,很多新手JavaScript开发者对这个概念还是很困惑的. 正确理解闭包可以帮助你写出更好.更高效. ...
- C# 之 数字格式化
格式规范的完整形式:{index [,width][:formatstring]} index是此格式程序引用的格式字符串之后的参数,从零开始计数:width(可选) 是要设置格式的字段的宽度,wid ...
- Migrating your code from 9.3 to 10.x
刚发现ArcGIS Objects SDK提供了一个代码升级分析工具,用于辅助将程序从9.3升级到10.X:ArcGIS Code Migration Analyzer. 安装sdk后,在vs2010 ...
- Python学习(六) —— 函数
一.函数的定义和调用 为什么要用函数:例如,计算一个数据的长度,可以用一段代码实现,每次需要计算数据的长度都可以用这段代码,如果是一段代码,可读性差,重复代码多: 但是如果把这段代码封装成一个函数,用 ...
- MVC(面试)
一般都是三层,表现层(UI).业务逻辑层(BLL).数据访问层(DAL),这些东西不用深究,别为了设计而设计就行.分三层是为了使项目架构体系更加清晰,而且项目参与人员的分工也可以更加明确,也有利于项目 ...
- IDEA创建SpringBoot项目
创建SpringBoot有三种方式: 方式一:(常用方式)
- react 环境搭建
1:需要给系统装一个node https://nodejs.org/zh-cn/ 2:然后需要到cmd安装一个淘宝镜像 (在cmd上面执行): npm install -g cnpm --regis ...
- TensorFlow图像预处理-函数
更多的基本的API请参看TensorFlow中文社区:http://www.tensorfly.cn/tfdoc/api_docs/python/array_ops.html 下面是实验的代码,可以参 ...