A1069. The Black Hole of Numbers
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
bool cmp1(int a, int b){
return a < b;
}
bool cmp2(int a, int b){
return a > b;
}
void numSort(int n, int &r1, int &r2){
int temp[];
int i = ;
r1 = ; r2 = ;
do{
temp[i++] = n % ;
n = n / ;
}while(n != || i < );
sort(temp, temp + i, cmp1);
for(int j = , P = ; j < i; j++){
r1 = r1 + P * temp[j];
P = P * ;
}
sort(temp, temp + i, cmp2);
for(int j = , P = ; j < i; j++){
r2 = r2 + P * temp[j];
P = P * ;
}
}
int main(){
int N, r1, r2, ans;
scanf("%d", &N);
numSort(N, r1, r2);
do{
ans = r1 - r2;
printf("%04d - %04d = %04d\n", r1, r2, ans);
numSort(ans, r1, r2);
}while(ans != && ans != );
cin >> N;
return ;
}
总结:
1、注意在int转换为num[ ]数组时,如果不够四位,应补全成四位,否则答案会出错。(15应转换为0015和1500,而不是15和50)。
A1069. The Black Hole of Numbers的更多相关文章
- APT甲级——A1069 The Black Hole of Numbers
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in ...
- PAT_A1069#The Black Hole of Numbers
Source: PAT A1069 The Black Hole of Numbers (20 分) Description: For any 4-digit integer except the o ...
- PAT 1069 The Black Hole of Numbers
1069 The Black Hole of Numbers (20 分) For any 4-digit integer except the ones with all the digits ...
- PAT 1069 The Black Hole of Numbers[简单]
1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...
- pat1069. The Black Hole of Numbers (20)
1069. The Black Hole of Numbers (20) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, ...
- 1069. The Black Hole of Numbers (20)【模拟】——PAT (Advanced Level) Practise
题目信息 1069. The Black Hole of Numbers (20) 时间限制100 ms 内存限制65536 kB 代码长度限制16000 B For any 4-digit inte ...
- pat 1069 The Black Hole of Numbers(20 分)
1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...
- PAT 甲级 1069 The Black Hole of Numbers (20 分)(内含别人string处理的精简代码)
1069 The Black Hole of Numbers (20 分) For any 4-digit integer except the ones with all the digits ...
- 1069 The Black Hole of Numbers (20分)
1069 The Black Hole of Numbers (20分) 1. 题目 2. 思路 把输入的数字作为字符串,调用排序算法,求最大最小 3. 注意点 输入的数字的范围是(0, 104), ...
随机推荐
- 记一次用WPScan辅助渗透WordPress站点
记一次用WPScan辅助渗透WordPress站点 一.什么是WPScan? WPScan 是一个扫描 WordPress 漏洞的黑盒子扫描器,它可以为所有 Web 开发人员扫描 WordPress ...
- windows 脚本
sudo.vbs http://blog.csdn.net/qidi_huang/article/details/52242053 c:\windows\sudo.vbs 'ShellExecute ...
- Shell学习笔记一
Shell 简介 Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.Shell 既是一种命令语言,又是一种程序设计语言. 基本上Shell分两大类:一:图形界面Shell(G ...
- 网络流第一题!!!BZOJ1001
歇逼了一晚上,懵懵懂懂的懂了Dinic算法 大概是一遍BFS+DFS,还不是很懂,明天继续看!!! #include<iostream> #include<stdio.h> # ...
- Scrum Meeting 6
第六次会议 由于之前队员一直在做数据库和编译大作业,课业压力较大,所以软工进度往后拖了好多. No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 N ...
- Redis持久化的两种方式和区别
该文转载自:http://www.cnblogs.com/swyi/p/6093763.html Redis持久化的两种方式和区别 Redis是一种高级key-value数据库.它跟memcached ...
- ABP框架用Dapper实现通过SQL访问数据库
ABP的框架(2) - 访问数据库 为了防止不提供原网址的转载,特在这里加上原文链接:http://www.cnblogs.com/skabyy/p/7517397.html 本篇我们实现数据库的 ...
- Spring Boot features - Profiles
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-profiles.html https://w ...
- Building Java Projects with Gradle
https://spring.io/guides/gs/gradle/ Gradle学习系列教程 https://blog.csdn.net/column/details/gradle-transla ...
- 为什么要用Thrift
Why Thrift, Why not HTTP RPC(JSON+gzip) https://stackoverflow.com/questions/9732381/why-thrift-why-n ...