CF285E Positions in Permutations
思路
dp+二项式反演的神题
就是dp部分非常麻烦(好吧是我傻了
考虑先钦定m个满足条件的位置,这m个\(x_i\),只能放\(x_i-1\)或\(x_i+1\),然后其他的随便放(得出至少m个的方案数,然后上一发二项式反演即可
设dp[i][j][0/1][0/1]表示前i个,有j个满足条件的位置,第i个和第i+1个是否被放在其他位置,
然后有,
dp[i][j][k][0]+=dp[i-1][j][p][k](不管第i个位置,第i个位置没有被选中)
dp[i][j+1][k][0]+=dp[i-1][j][p][k](p==0,第i-1没有被放在其他位置,第i-1个放在第i个产生贡献)
dp[i][j+1][k][1]+=dp[i-1][j][p][k](i<n,第i+1个被放在第i个产生贡献)
然后f[i]就是dp[i][m][0][0]+dp[i][m][1][0]+dp[i][m][0][1]+dp[i][m][1][1]
因为其他随便放,所以f[i]再乘上一个(n-i)!
然后二项式反演就行了
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MOD = 1000000007;
int dp[1100][1100][2][2],jc[1100],inv[1100],n,m,f[1100];
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(ans*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans;
}
int C(int n,int m){
return jc[n]*inv[m]%MOD*inv[n-m]%MOD;
}
signed main(){
scanf("%lld %lld",&n,&m);
dp[0][0][1][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<i;j++)
for(int k=0;k<2;k++)
for(int p=0;p<2;p++){
dp[i][j][p][0]=(dp[i][j][p][0]+dp[i-1][j][k][p])%MOD;
if(k==0)
dp[i][j+1][p][0]=(dp[i][j+1][p][0]+dp[i-1][j][k][p])%MOD;
if(i<n)
dp[i][j+1][p][1]=(dp[i][j+1][p][1]+dp[i-1][j][k][p])%MOD;
}
// for(int i=1;i<=n;i++)
// for(int j=0;j<i;j++)
// for(int k=0;k<2;k++)
// for(int p=0;p<2;p++)
// printf("dp[%lld][%lld][%lld][%lld]=%lld\n",i,j,k,p,dp[i][j][k][p]);
jc[0]=1;
for(int i=1;i<=n;i++)
jc[i]=(jc[i-1]*i)%MOD;
inv[n]=pow(jc[n],MOD-2);
for(int i=n-1;i>=0;i--)
inv[i]=(inv[i+1]*(i+1))%MOD;
for(int i=0;i<=n;i++){
int mid1=0;
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
mid1=(mid1+dp[n][i][j][k])%MOD;
f[i]=mid1%MOD*jc[n-i]%MOD;
}
// for(int i=0;i<=n;i++)
// printf("f[%lld]=%lld\n",i,f[i]);
int ans=0;
for(int i=m;i<=n;i++)
ans=(ans+((((i-m)&1)?-1:1)*C(i,m)%MOD*f[i]%MOD+MOD)%MOD)%MOD;
printf("%lld\n",ans);
return 0;
}
CF285E Positions in Permutations的更多相关文章
- CF285E Positions in Permutations(dp+容斥)
题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k. Solution 直接dp会有很大的后效性. 所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1] ...
- 【做题】CF285E. Positions in Permutations——dp+容斥
题意:求所有长度为\(n\)的排列\(p\)中,有多少个满足:对于所有\(i \,(1 \leq i \leq n)\),其中恰好有\(k\)个满足\(|p_i - i| = 1\).答案对\(10^ ...
- 【CF285E】Positions in Permutations(动态规划,容斥)
[CF285E]Positions in Permutations(动态规划,容斥) 题面 CF 洛谷 题解 首先发现恰好很不好算,所以转成至少,这样子只需要确定完一部分数之后剩下随意补. 然后套一个 ...
- Codeforces 285 E. Positions in Permutations
\(>Codeforces \space 285 E. Positions in Permutations<\) 题目大意 : 定义一个长度为 \(n\) 的排列中第 \(i\) 个元素是 ...
- 【CF285E】Positions in Permutations
题目 刷水题涨信心 显然这是个广义容斥,我们现在算一下至少有\(i\)个完美数的方案数就好了 这\(1000\)的数据范围显然在暗示\(n^2\)的dp 我们注意到这个条件大概就是\(P_i=i-1\ ...
- CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)
Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive in ...
- CF285 E Positions in Permutations——“恰好->大于”的容斥和允许“随意放”的dp
题目:http://codeforces.com/contest/285/problem/E 是2018.7.31的一场考试的题,当时没做出来. 题解:http://www.cnblogs.com/y ...
- Codeforces 285E - Positions in Permutations(二项式反演+dp)
Codeforces 题目传送门 & 洛谷题目传送门 upd on 2021.10.20:修了个 typo( 这是一道 *2600 的 D2E,然鹅为啥我没想到呢?wtcl/dk 首先第一步我 ...
- Codeforces Round #175 (Div. 2)
A. Slightly Decreasing Permutations 后\(k\)个倒序放前面,前\(n-k\)个顺序放后面. B. Find Marble 模拟. C. Building Perm ...
随机推荐
- 【C++/函数】实验2
1.实验内容 函数声明和函数定义: 形参和实参: 主调函数把实参的值传送给被调函数的形参从而实现主调函数向被调函数的数据传送. 形参:形式参数,表示主调函数与被调函数之间的联系.标识了在形参出现的位置 ...
- 用友U8存货分类通过DataTable生成EasyUI Tree JSON
<%@ WebHandler Language="C#" Class="InventoryClass" %> using System; using ...
- ELK之使用heartbeat监控WEB站点
简介 无论您要测试同一台主机上的服务,还是要测试开放网络上的服务,Heartbeat 都能轻松生成运行时间数据和响应时间数据 Heartbeat 能够通过 ICMP.TCP 和 HTTP 进行 pin ...
- Win7 搭建Linux开发环境
Vargant Vagrant 是一个基于 Ruby 的工具,用于创建和部署虚拟化开发环境.它使用 Oracle 的开源 VirtualBox 虚拟化系统,使用 Chef 创建自动化虚拟环境. 功能特 ...
- 洛谷P4396 作业 [AHOI2013] 莫队
正解:莫队 解题报告: 传送门! 天呐太久没做莫队了连板子都认不出来了,,,所以复健下做下莫队的题目QAQ 就很板子鸭,和莫队板子比好像只有一个离散化,,,?就不讲了QAQ 等下直接放代码QAQ ov ...
- C#设计模式(6)——原型模式(Prototype Pattern)(转)
一.引言 在软件系统中,当创建一个类的实例的过程很昂贵或很复杂,并且我们需要创建多个这样类的实例时,如果我们用new操作符去创建这样的类实例,这未免会增加创建类的复杂度和耗费更多的内存空间,因为这样在 ...
- nuxtjs中使用axios
最近使用nuxtjs服务端渲染框架,在异步请求时遇到两个问题,一是怎么使用axios, 二是怎么在asyncData方法中使用axios 当使用脚手架create nuxt-app创建项目时,会提示是 ...
- 擦他丫的,今天在Django项目中引用静态文件jQuery.js 就是引入报错,终于找到原因了!
擦 ,今天在Django项目中引用静态文件jQuery.js 就是引入报错,终于找到原因了! 问题在于我使用的谷歌浏览器,默认使用了缓存,导致每次访问同一个url时,都返回的是缓存里面的东西.通过谷歌 ...
- word之选中文本
在word和notepad中: 特别是在文件很大,如果用鼠标下滑的话,不知道会滑多久呢, 快捷键+鼠标点击截至处
- Bamboo基础概念
1.project 1)提供报告.展板.连接 |——2.plan 1)指定默认代码仓库(同一个仓库) 2)构建触发条件的配置 3)构建结果的发送与通知 ...