Balancing Act
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14550   Accepted: 6173

Description

Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

Source

 
题意:求一棵树的编号最小的重心
思路:树形dp。
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<bitset>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
#define bug(x) cout<<"bug"<<x<<endl;
#define PI acos(-1.0)
#define eps 1e-8
const int N=1e5+,M=1e5+;
const int inf=0x3f3f3f3f;
const ll INF=1e18+,mod=1e9+;
int n;
vector<int>G[N];
int si[N],maxx[N];
int ans;
int dfs(int u,int fa)
{
for(int i=; i<G[u].size(); i++)
{
int v=G[u][i];
if(v==fa) continue;
si[u]+=dfs(v,u);
maxx[u]=max(maxx[u],si[v]);
}
si[u]++;
maxx[u]=max(maxx[u],n-si[u]);
if(maxx[u]<maxx[ans]) ans=u;
else if(maxx[u]==maxx[ans]&&u<ans) ans=u;
return si[u];
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=; i<n; i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
memset(si,,sizeof(si));
memset(maxx,,sizeof(maxx));
ans=,maxx[]=inf;
dfs(,);
printf("%d %d\n",ans,maxx[ans]);
for(int i=;i<=n+;i++) G[i].clear();
}
return ;
}

树形dp

POJ 1655.Balancing Act 树形dp 树的重心的更多相关文章

  1. poj 1655 Balancing Act(找树的重心)

    Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...

  2. POJ 1655 Balancing Act (求树的重心)

    求树的重心,直接当模板吧.先看POJ题目就知道重心什么意思了... 重心:删除该节点后最大连通块的节点数目最小 #include<cstdio> #include<cstring&g ...

  3. POJ 1655 Balancing Act(求树的重心)

    Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...

  4. POJ 2378.Tree Cutting 树形dp 树的重心

    Tree Cutting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4834   Accepted: 2958 Desc ...

  5. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  6. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  7. POJ 1655 Balancing Act(求树的重心--树形DP)

    题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...

  8. POJ 1655 Balancing Act (树状dp入门)

    Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...

  9. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

随机推荐

  1. .net updatePannel 局部刷新效果实现后,但是仍是全部刷新的修改方法

    最近做了一个小例子,就是晚上都有的那种小的updatepannel的局部刷新的小例子,但是发现按照那个例子虽然能够实现label2的局部刷新,但是看上去效果确实整个页面都在刷新,这让人很头疼,所以我在 ...

  2. [蓝桥杯]PREV-7.历届试题_连号区间数

    问题描述 小明这些天一直在思考这样一个奇怪而有趣的问题: 在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是: 如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增 ...

  3. 搜狗浏览器总是打开123.sogou.com-记搜狗浏览器遭遇劫持一例

    昨日,因从网上下载了office2010破解工具,压缩包中有个文件为名为[office 2010激活工具\为保证永久激活,要先点击这个配置,再点击KMSELDIYI激活.exe],单击之后没有反应.后 ...

  4. node升级的正确方法

    本文主要是针对安装了node的用户如何对node进行升级或者安装指定版本:没有安装node的可以参考连接node安装方法 . 安装方法: 1.产看node版本,没安装的请先安装: $  node -v ...

  5. bzoj5047: 空间传送装置

    Description 太空中一共有n座星球,它们之间可以通过空间传送装置进行转移.空间传送装置分为m种,第i种装置可以用4个参 数a_i,b_i,c_i,d_i来描述.因为时空抖动的问题,在非整数时 ...

  6. 如何查看k8s存在etcd中的数据(转)

    原文 https://yq.aliyun.com/articles/561888 一直有这个冲动, 想知道kubernetes往etcd里放了哪些数据,是如何组织的. 能看到,才有把握知道它的实现和细 ...

  7. Java虚拟机--------JVM常见参数

    JVM 调优常见参数 Java1.7的jvm参数查看一下官方网站. http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java. ...

  8. python-web自动化-三种等待方式

    当有元素定位不到时,比如下拉框,弹出框等各种定位不到时:一般是两种问题:1 .有frame :2.没有加等待 下面学习三种等待方式: 1.强制等待 sleep(xx)这种方法简单粗暴,不管浏览器是否加 ...

  9. Requests将verify设置为False后取消警告的方式

    方法一 import requests import urllib3 urllib3.disable_warnings() resp = requests.get('https://www.***.c ...

  10. python:win下将py文件打包成exe

    [环境]windows,正常运行的python文件 1.安装pyinstaller ,cmd下执行以下命令,需看到安装成功界面 pip install pyinstaller 2.cmd中进入要打包的 ...