Description

K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.

为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关系,是指N个人 A1A2...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.

比如四边关系指ABCD四个人 AB,BC,CD,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王相知道,最少可以分多少支队。

Input

第一行两个整数N,M。1<=N<=10000,1<=M<=1000000.表示有N个人,M对认识关系. 接下来M行每行输入一对朋友

Output

输出一个整数,最少可以分多少队

Sample Input

4 5
1 2
1 4
2 4
2 3
3 4

Sample Output

3

HINT

一种方案(1,3)(2)(4)

Solution

弦图染色流程:

初始把所有点的$ID$标为$0$。

每次从没删除的点中取$ID$最大的点$x$,让与$x$相连的点$ID++$,同时删除$x$点。

我用了个$set$维护复杂度也许是$nlogn$的。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<set>
#define N (10009)
using namespace std; struct Edge{int to,next;}edge[N*];
int n,m,ans,vis[N],ID[N];
int head[N],num_edge;
set<pair<int,int> >s;
set<pair<int,int> >::iterator it; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} int main()
{
n=read(); m=read();
for (int i=; i<=m; ++i)
{
int u=read(),v=read();
add(u,v); add(v,u);
}
for (int i=; i<=n; ++i) s.insert(make_pair(,i));
while (!s.empty())
{
it=s.end(); it--; s.erase(it);
int x=(*it).second; vis[x]=;
for (int i=head[x]; i; i=edge[i].next)
if (!vis[edge[i].to])
{
s.erase(make_pair(ID[edge[i].to],edge[i].to));
s.insert(make_pair(++ID[edge[i].to],edge[i].to));
}
}
for (int i=; i<=n; ++i) ans=max(ans,ID[i]+);
printf("%d\n",ans);
}

BZOJ1006:[HNOI2008]神奇的国度(弦图染色)的更多相关文章

  1. [bzoj1006](HNOI2008)神奇的国度(弦图最小染色)【太难不会】

    Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关 ...

  2. [BZOJ1006] [HNOI2008] 神奇的国度 (弦图)

    Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系 ...

  3. bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1788  Solved: 775[Submit][Stat ...

  4. bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法

    [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4370  Solved: 2041[Submit][Status][D ...

  5. 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题

    1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...

  6. bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MB Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角 ...

  7. ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net

    ●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...

  8. BZOJ 1006: [HNOI2008]神奇的国度(弦图)

    传送门 解题思路 弦图就是图中任意一个大小\(>=4\)的环至少存在一条两个节点不相邻的边,这样的图称为弦图,弦图有许多优美的性质.一个无向图是弦图当且仅当它有一个完美消除序列,完美消除序列就是 ...

  9. bzoj1006 [HNOI2008]神奇的国度

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2304  Solved: 1043 Description ...

随机推荐

  1. Scala面向对象编程与类型系统

    Scala支持面向对象编程, 其面向对象特性与Java有共同之处并添加了很多新的特性. 类定义 scala使用class关键字定义类: class MyComplex(real0:Double, im ...

  2. MyBatis(国税)

    一.MyBatis概要 1.1.ORM介绍 对象关系映射(Object Relational Mapping,简称ORM,或O/RM,或O/R mapping),用于实现面向对象编程语言里不同类型系统 ...

  3. Mongodb 集群实战

    该实战过程完全跟着官网一步一步实现 ,官网教程:https://docs.mongodb.com/manual/tutorial/atlas-free-tier-setup/ 使用Mongo Shel ...

  4. C#日期转换(转载)

    转载来源:https://www.cnblogs.com/johnblogs/p/5912632.html DateTime.ToString()的各种日期格式 例: ToString:2016/9/ ...

  5. JSONP和HttpClient的区别

    JSONP的特点: 1>JSONP可以解决主流浏览器的跨域问题 2>需要通过三步实现跨域/javascript-src开放策略/回调函数/数据封装 3>JSONPqingqiu是游浏 ...

  6. HighCharts使用更多图表HighChartsMore

    添加highcharts-moreimport HighCharts from 'highcharts'import highchartsMore from 'highcharts/highchart ...

  7. 通过IEnumerable接口遍历数据

    使用IEnumerable接口遍历数据,这在项目中会经常的用到,这个类型呢主要是一个枚举器. 1.首先需要让该类型实现一个名字叫IEnumerable的接口,实现该接口的主要目的是为了让当前类型中增加 ...

  8. ActiveReports公开课开启报名,学习如何解决中国式复杂报表难题

    ActiveReports实战教学 90分钟解决中国式复杂报表六大需求 [开课时间]4月19日 [主讲老师]葡萄城资深报表专家 [培训方式]网络在线公开课 报名地址

  9. oracle执行先决条件检查失败的解决方法

    在安装oracle 11g时,出现执行先决条件失败的情况如下: 你可以忽略所有强制安装,一般不会影响功能,但如果你想知道为什么会产生这种错误, 并且当出现以上情况时又该如何解决呢?如下列出了原因和解决 ...

  10. 安全测试 一次关于WEB的URL安全测试

    一次关于WEB的URL安全测试 by:授客 QQ:1033553122     测试思路: 时间精力问题,对web安全这块也没咋深入研究,但因为某个小插曲,公司要求先做个简单的安全测试,主要是针对UR ...