<Hands-on ML with Sklearn & TF>  Chapter 1

  1. what is ml
    1. from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.
  2. what problems to solve
    1. exist solution but a lot of hand-tuning/rules
    2. no good solutions using a traditional approach
    3. fluctuating environment
    4. get insight about conplex problem and large data
  3. type
    1. whether or not trained with human supervision(supervised, unsupervised, semisupervised, reinforcement)
    2. whether or not learn incrementally on the fly(online, batch)
    3. whether or not work by simply comparing new data point vs know data point,or instance detect pattern in training data and build a prediction model(instace-based, model-based)
  4. (un)supervision learning
    1. supervision : include the desired solution called labels

      • classification,K-Nearest Neighbors, Linear Regression, Logistic Regression, SVM, Decision Trees, Random Forests, Neural network
    2. unsupervision : without labels
      • Clustering : k-means, HCA, ecpectation maximization
      • Viualization and dimensionality reducation : PCA, kernal PCA, LLE, t-SNE
      • Association rule learning : Apriori, Eclat
    3. semisupervision
      • unsupervision --> supervision
    4. reinforcement : an agent in context
      1. observe the environment
      2. select and perform action
      3. get rewards in return
  5. batch/online learning
    1. batch : offline, to known new data need to train a new version from scratch one the full dataset
    2. online : incremental learning : challenge is bad data
  6. instance-based/model-based
    1. instance-based : the system learns the examples by heart, then the generalizes to the new cases using a similarity measure
    2. model-based : studied the data; select a model; train it on the training data; applied the model to make predictions on new cases
  7. Challenge
    1. insufficient quantity of training data
    2. nonrepresentative training data
    3. poor-quality data
    4. irrelevant features : feature selection; feature extraction; creating new feature by gathering new data
    5. overfitting : regularization -> hyperparameter
    6. underfitting : powerful model; better feature; reduce construct
  8. Testing and Validating
    1. 80% of data for training 20% for testing
    2. validating : best model and hyperparameter for training set unliking perform as well on new data
      1. train multiple models with various hyperparameters using training data
      2. to get generatlization error , select the model and hyperparamaters that perform best on the validation set
    3. cross-validating : the training set is split into complementary subsets, ans each model is trained against a different conbination of thse subsets and validated against the remain parts.

   Example 1-1:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn.linear_model #load the data
oecd_bli = pd.read_csv("datasets/lifesat/oecd_bli_2015.csv",thousands=',')
gdp_per_capita = pd.read_csv("datasets/lifesat/gdp_per_capita.csv",thousands=',',delimiter='\t',encoding='latin1',na_values='n/a') #prepare the data
def prepare_country_stats(oecd_bli, gdp_per_capita):
#get the pandas dataframe of GDP per capita and Life satisfaction
oecd_bli = oecd_bli[oecd_bli["INEQUALITY"]=="TOT"]
oecd_bli = oecd_bli.pivot(index="Country", columns="Indicator", values="Value")
gdp_per_capita.rename(columns={"": "GDP per capita"}, inplace=True)
gdp_per_capita.set_index("Country", inplace=True)
full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita, left_index=True, right_index=True)
return full_country_stats[["GDP per capita", 'Life satisfaction']] country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
#regularization remove_indices = [0, 1, 6, 8, 33, 34, 35]
country_stats.to_csv('country_stats.csv',encoding='utf-8')
X = np.c_[country_stats["GDP per capita"]]
Y = np.c_[country_stats["Life satisfaction"]] #Visualize the data
country_stats.plot(kind='scatter',x='GDP per capita',y='Life satisfaction') #Select a linear model
lin_reg_model = sklearn.linear_model.LinearRegression() #Train the model
lin_reg_model.fit(X, Y) #plot Regression model
t0, t1 = lin_reg_model.intercept_[0], lin_reg_model.coef_[0][0]
X = np.linspace(0, 110000, 1000)
plt.plot(X, t0 + t1 * X, "k")
plt.show() #Make a prediction for Cyprus
X_new=[[22587]]
print(lin_reg_model.predict(X_new))

      

课后练习挺好的

Notes : <Hands-on ML with Sklearn & TF> Chapter 1的更多相关文章

  1. Notes : <Hands-on ML with Sklearn & TF> Chapter 5

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  2. Notes : <Hands-on ML with Sklearn & TF> Chapter 7

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  3. Notes : <Hands-on ML with Sklearn & TF> Chapter 6

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  4. Notes : <Hands-on ML with Sklearn & TF> Chapter 4

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  5. Notes : <Hands-on ML with Sklearn & TF> Chapter 3

    Chapter 3-Classification .caret, .dropup > .btn > .caret { border-top-color: #000 !important; ...

  6. Book : <Hands-on ML with Sklearn & TF> pdf/epub

    非常好的书,最近发现了pdf版本,链接:http://www.finelybook.com/hands-on-machine-learning-with-scikit-learn-and-tensor ...

  7. H5 Notes:PostMessage Cross-Origin Communication

    Javascript中要实现跨域通信,主要有window.name,jsonp,document.domain,cors等方法.不过在H5中有一种新的方法postMessage可以安全实现跨域通信,并 ...

  8. H5 Notes:Navigator Geolocation

    H5的地理位置API可以帮助我们来获取用户的地理位置,经纬度.海拔等,因此我们可以利用该API做天气应用.地图服务等. Geolocation对象是我们获取地理位置用到的对象. 首先判断浏览器是否支持 ...

  9. notes:spm多重比较校正

    SPM做完统计后,statistical table中的FDRc实际上是在该p-uncorrected下,可以令FDR-correcred p<=0.05的最小cluster中的voxel数目: ...

随机推荐

  1. Jvm的体系结构

    1.垃圾回收器 垃圾回收器(又称为gc):是负责回收内存中无用的对象(好像地球人都知道),就是这些对象没有任何引用了,它就会被视为:垃圾,也就被干掉了. 2.类装载子系统 一听名字,大家就知道,肯定是 ...

  2. Android 开发 深入理解Handler、Looper、Messagequeue 转载

    转载请注明出处:http://blog.csdn.net/vnanyesheshou/article/details/73484527 本文已授权微信公众号 fanfan程序媛 独家发布 扫一扫文章底 ...

  3. ARCore中根据屏幕坐标计算射线的算法

    ARCore中提供了根据屏幕坐标.视口大小及view. project矩阵计算从屏幕坐标发射一条射线的方法,此方法用于3D拾取. class Ray { public final Vector3f o ...

  4. C# 调用程序集方法

    加载程序集 (Assembly类) 使用 Assembly 类可以加载程序集.浏览程序集的元数据和构成部分.发现程序集中包含的类型以及创建这些类型的实例 // 加载该路径的程序集 Assembly a ...

  5. Android Studio 3.1.3正式版的新坑。。。

    Gradle编译时没问题,运行App时候出现: java.util.NoSuchElementException java.lang.RuntimeException: com.android.bui ...

  6. Android Spinner 设置setOnItemSelectedListener时,竟会默认触发一次事件!

    当然是关闭这坑货了: //禁止OnItemSelectedListener默认自动调用一次 spinnerDutyPerson.setSelection(0, true); //放到TagContai ...

  7. 37.Spring-事务控制.md

    目录 1.分类 2.Spring对jadc事务管理 2.1xml方式 2.1.1首先定义Dao对象和Server对象 2.1.2配置文件实现事务管理 2.2注解方式 2.2.1对象类 2.2.2配置文 ...

  8. JAVA四则运算(读写文件)

    完成时间:17:10 package 四则运算试题; import java.io.BufferedReader; import java.io.PrintStream; import java.ut ...

  9. Es6(Symbol,set,map,filter)

    首先再讲这几个新东西之前,先说一个Es6中新出的扩展运算符(...) 1.展开运算符,就是把东西展开,可以用在array和object上 比如: let a=[,] let b=[,...a,]//[ ...

  10. Oracle修改表结构字段名和字段长度

    添加字段的语法:alter table tablename add (column datatype [default value][null/not null],….); 修改字段的语法:alter ...