洛谷 P1463 [POI2002][HAOI2007]反素数
题目链接
题目描述
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?
题目分析
根据反质数的概念和算术基本定理,我们可以知道,若x为反质数,则x=∏piai(pi为质数,pi>pi-1,ai<=ai-1)(对于最后一项限制的说明:若存在ai>ai-1,则交换ai与ai-1所得的数与原来的数因数个数相等,但比原来的数小,故原数非反质数)。
这样,我们只需要从小到大枚举质数,对于每一个质数枚举它的指数进行搜索,判断生成的数是否是满足条件的最大反质数即可,注意如果当前生成的数因数个数与记录的最大因数个数相等,但数本身比记录值小,需要更新记录值,因为原来的数已经不是反质数了。
对于枚举质数的范围,因为2×3×5×7×11×13×17×19×23×29大于N的最大值,故只需枚举这几个质数即可。同时,由于231也已经大于N的最大值,所以指数的上界为31。
代码
#include<cstdio>
using namespace std;
const int prime[]={,,,,,,,,,,};
unsigned long long n,max_factor,ans;
void dfs(unsigned long long step,unsigned long long sum,unsigned long long factor,unsigned long long maxn)
{
if(step>||sum>n)
return;
if(max_factor<factor)
{
max_factor=factor;
ans=sum;
}
else if(max_factor==factor&&ans>sum)
ans=sum;
unsigned long long t=;
for(unsigned long long i=;i<=maxn;++i)
{
t*=prime[step];
dfs(step+,sum*t,factor*(i+),i);
}
return;
}
int main()
{
scanf("%llu",&n);
dfs(,,,);
printf("%llu",ans);
return ;
}
反素数
洛谷 P1463 [POI2002][HAOI2007]反素数的更多相关文章
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925
题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- [POI2002][HAOI2007]反素数
题意 反素数 想法 证明这样一个结论 对于一个可行的反素数\(p\) \(p = \sum_{i}^{k} p_{k} ^ {c_k}\) 当 \(p_i > p_j 有 c_i < c_ ...
- 数学结论【p1463】[POI2002][HAOI2007]反素数
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...
- [POI2002][HAOI2007]反素数 数论 搜索 好题
题目描述: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4, ...
- [POI2002][HAOI2007]反素数(Antiprime)
题目链接 这道题需要用到整数唯一分解定理以及约数个数的计算公式.这里我就不再阐述了. 公式可以看出,只有指数影响约数个数,那么在唯一分解出的乘式中,指数放置的任何位置都是等价的.(即 23*34*57 ...
- 【BZOJ1053】[HAOI2007]反素数
[BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...
- 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)
\([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...
- 【BZOJ1053】[HAOI2007]反素数(搜索)
[BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...
随机推荐
- async和await的执行顺序问题
说明 : 要了解执行顺序,所需要的知识是了解浏览器js运行机制,以及微任务和宏任务的先后顺序.如果你明白了宏任务.微任务,请往下看: async function async1 () { consol ...
- UVa 1354 Mobile Computing[暴力枚举]
**1354 Mobile Computing** There is a mysterious planet called Yaen, whose space is 2-dimensional. Th ...
- jQuery 工具类函数-使用$.extend()扩展Object对象
除使用$.extend扩展工具函数外,还可以扩展原有的Object对象,在扩展对象时,两个对象将进行合并,当存在相同属性名时,后者将覆盖前者,调用格式为: $. extend (obj1,obj2,… ...
- 如何在很短的时间内将大量数据插入到ConcurrentHashMap(转)
将大批量数据保存到map中有两个地方的消耗将会是比较大的:第一个是扩容操作,第二个是锁资源的争夺.第一个扩容的问题,主要还是要通过配置合理的容量大小和扩容因子,尽可能减少扩容事件的发生:第二个锁资源的 ...
- Python1_Python的目录结构、执行顺序、__name__ == __main__
Python执行顺序 python属于脚本语言,不像编译型的语言那样先将程序编译成二进制后再运行,而是动态地逐行解释运行: 也就是从脚本的第一行开始运行,没有统一的入口. python会从文件的第一行 ...
- 关于instanface的问题
nstanceof关键字来判断某个对象是否属于某种数据类型.报错 代码如下 package cn.lijun.demo3; import cn.lijun.demo.Person;import cn ...
- JDBC 数据源
概述 JNDI 数据源配置的相关内容已经在 JNDI 资源文档中详细介绍过.但从 Tomcat 用户的反馈意见来看,有些配置的细节问题非常棘手. 针对常用的数据库,我们已经给 Tomcat 用户提供了 ...
- 牛客训练赛55 E 树
很妙的一个树形DP问题,简单考虑了一下就过了 https://ac.nowcoder.com/acm/contest/2927/E 主要就是推公式(公式有点长呀) 大概就是这样,其实挺简单的. #in ...
- Python学习3月8号【python编程 从入门到实践】---》笔记(1)
第十章:处理文件和异常 #学习处理文件,让程序能够快速地分析大量的数据#学习错误处理,避免程序在面对意外情形时崩溃#学习异常,是python创建的特殊对象,用于管理程序运行时出现#学习模块json,它 ...
- 20191024-3 互评Alpha阶段作品
此作业要求参见https://edu.cnblogs.com/campus/nenu/2019fall/homework/9860 本组对构建之法组评价的博客链接:https://www.cnblog ...