题目描述

给出n个数qi,给出Fj的定义如下:

\[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }
\]

令\(E_i=\frac{F_i}{q_i}\),求\(E_i\).

输入输出格式

输入格式:

第一行一个整数n。

接下来n行每行输入一个数,第i行表示qi。

输出格式:

n行,第i行输出Ei。

与标准答案误差不超过1e-2即可。

输入输出样例

输入样例#1:

5

4006373.885184

15375036.435759

1717456.469144

8514941.004912

1410681.345880

输出样例#1:

-16838672.693

3439.793

7509018.566

4595686.886

10903040.872

说明

对于30%的数据,n≤1000。

对于50%的数据,n≤60000。

对于100%的数据,n≤100000,0<qi<1000000000。

[spj 0.01]

题解

https://www.cnblogs.com/iwtwiioi/p/4126284.html

看这个题解吧。。

#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <algorithm>
inline void swap(int &a, int &b){int tmp = a;a = b;b = tmp;}
inline void swap(double &a, double &b){double tmp = a;a = b;b = tmp;}
inline void read(int &x)
{
x = 0;char ch = getchar(), c = ch;
while(ch < '0' || ch > '9') c = ch, ch = getchar();
while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
if(c == '-') x = -x;
}
const int MAXN = 1 << 18;
const double PI = acos(-1);
struct Complex
{
double real, imag;
Complex(double _real, double _imag){real = _real, imag = _imag;}
Complex(){real = imag = 0;}
Complex operator+(const Complex &x) const {return Complex(real + x.real, imag + x.imag);}
Complex operator-(const Complex &x) const {return Complex(real - x.real, imag - x.imag);}
Complex operator*(const Complex &x) const {return Complex(real * x.real - imag * x.imag, real * x.imag + imag * x.real);}
Complex& operator*=(const Complex &x) {return *this = (*this) * x;}
};
int n, m, tn, len, rev[MAXN], tmp;
Complex a[MAXN], b[MAXN], c[MAXN];
double q[MAXN];
void fft(Complex *arr, int f)
{
for(int i = 0; i < n; i++) if(i < rev[i]) std::swap(arr[i], arr[rev[i]]);
for(int i = 1; i < n; i <<= 1)
{
Complex wn(cos(PI / i), f * sin(PI / i));
for(int j = 0; j < n; j += i << 1)
{
Complex w(1, 0);
for(int k = 0; k < i; k++)
{
Complex x = arr[j + k], y = w * arr[j + k + i];
arr[j + k] = x + y;
arr[j + k + i] = x - y;
w *= wn;
}
}
}
if(f == -1) for(int i = 0;i < n;++ i) arr[i].real /= n;
}
int main()
{
read(n), -- n, tn = n;
for(int i = 0;i <= tn;++ i) scanf("%lf", &q[i]); for(int i = 0;i <= tn;++ i) a[i].real = q[i], c[i].real = q[tn - i];
for(int i = 1;i <= tn;++ i) b[i].real = (double)1.0/i/i;
m = tn + tn;
for(n = 1;n <= m;n <<= 1) ++ len; for(int i = 0; i < n; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
fft(a, 1), fft(b, 1), fft(c, 1);
for(int i = 0;i <= n;++ i) a[i] *= b[i], c[i] *= b[i];
fft(a, -1), fft(c, -1); for(int i = 0;i <= tn;++ i)
printf("%.3lf\n", a[i].real - c[tn - i].real);
return 0;
}

LuoguP3338 [ZJOI2014]力的更多相关文章

  1. [ZJOI3527][Zjoi2014]力

    [ZJOI3527][Zjoi2014]力 试题描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi.试求Ei. 输入 包含一个整数n,接下来n行每行输入一个数,第i行表示qi. 输出 有n ...

  2. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  3. 洛谷 P3338 [ZJOI2014]力 解题报告

    P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...

  4. 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2003  Solved: 11 ...

  5. [洛谷P3338] [ZJOI2014]力

    洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...

  6. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  7. [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)

    题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...

  8. 笔记-[ZJOI2014]力

    [ZJOI2014]力 \[\begin{split} E_j=&\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{ ...

  9. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

随机推荐

  1. LightOJ-1253-Misere Nim-nim博弈

    Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, eac ...

  2. Hadoop搭建,上传文件时出现错误,没有到主机的路由

    解决方案:(1)从namenode主机ping其它slaves节点的主机名(注意是slaves节点的主机名),如果ping不通,原因可能是namenode节点的/etc/hosts 未配置主机名与IP ...

  3. 从0的1学习JavaSE,Jdk的安装

    一.常用的dos命令 dir 罗列出当前目录的下所有文件名字 cd 路径 切换路径,该路径可以是相对于路径也可以是绝对路径 相对路径,只相对于当前的目录下的文件 绝对路径,是从盘符开始的路径地址 注意 ...

  4. sql实现查询某个字段在哪个表里 及结构是什么

    ) --数据库名 ) set @dbname2='aab' select @str = ' SELECT 表名=d.name,字段名=a.name,序号=a.column_id, 标识=is_iden ...

  5. 2018ICPC焦作 D-Keiichi Tsuchiya the Drift King /// 几何

    题目大意: https://nanti.jisuanke.com/t/34142 有一个弯道抽象成圆的一部分 车子抽象成矩形 漂移过程中矩形上边会与圆的圆心在同一条直线上 以右上点贴着弯道边缘进行漂移 ...

  6. CSS Sprites(CSS图像拼合技术)教程、工具集合

    本集合是有一位国外设计师收集整合,并由 oncoding翻译成中文的,感谢他们的辛苦贡献.CSS Sprites技术在国外并不是什么新技术,只不过近两年(尤其08年开始)中国开始流行这个词,大家也开始 ...

  7. Matplotlib---柱状图、直方图(高斯分布)

    # _*_ coding: gbk _*_ # @Author: Wonde # bar 直方图 import matplotlib.pyplot as plt # 绘图 from matplotli ...

  8. IPsec分析/测试/

    一   局域网拓扑图 局域网环境搭建步骤: (升级最新版本 ,恢复出厂设置后) 1 两台网关wan口直连,分别接两台pc , 2 局域网网络测试,正常情况下PC1 和PC2 互通 ,测试通过在进行ip ...

  9. 在egg.js中使用mongodb

    1.egg.js官网只推荐了mysqle,要用mongodb得另找资料.通过查找,大家都在用Mongoose连接,于是乎学习. 网站链接:https://www.npmjs.com/package/e ...

  10. css 苹方字体

    苹方-简 常规体 font-family: PingFangSC-Regular, sans-serif; 苹方-简 极细体 font-family: PingFangSC-Ultralight, s ...