题目描述

  你有一支由n名预备役士兵组成的部队,士兵从1到n编号,要将他们拆分成若干特别行动队调入战场。出于默契考虑,同一支特别行动队中队员的编号应该连续,即为形如(i,i+1,…,i+k)的序列。

  编号为i的士兵的初始战斗力为xi,一支特别运动队的初始战斗力x为队内士兵初始战斗力之和,即x=(xi)+(xi+1)+…+(xi+k)。

  通过长期的观察,你总结出一支特别行动队的初始战斗力x将按如下经验公式修正为x’:x’=ax^2+bx+c,其中a,b,c是已知的系数(a<0)。

  作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后战斗力之和最大。试求出这个最大和。

  例如,你有4名士兵,x1=2,x2=2,x3=3,x4=4。经验公式中的参数为a=-1,b=10,c=-20。此时,最佳方案是将士兵组成3个特别行动队:第一队包含士兵1和士兵2,第二队包含士兵3,第三队包含士兵4。特别行动队的初始战斗力分别为4,3,4,修正后的战斗力分别为4,1,4。修正后的战斗力和为9,没有其它方案能使修正后的战斗力和更大。

输入格式

输入由三行组成。第一行包含一个整数n,表示士兵的总数。第二行包含三个整数a,b,c,经验公式中各项的系数。第三行包含n个用空格分隔的整数x1,x2,…,xn,分别表示编号为1,2,…,n的士兵的初始战斗力。

输出格式

输出一个整数,表示所有特别行动队修正战斗力之和的最大值。

样例数据

样例输入

4

-1 10 -20

2 2 3 4

样例输出

9

数据范围

20%的数据中,n<=1000;

50%的数据中,n<=10000;

100%的数据中,1<=n<=1000000,-5<=a<=-1,|b|<=10000000,|c|<=10000000,1<=xi<=100。

————————————————————————————

题解

sum[]为前缀和数组,dp[i]为选到第i个时的最大值。
dp[i]=max(dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c);
dp[i]=(dp[j]+a*sum[j]^2+b*sum[j]-2*sum[i]*sum[j])+a*sum[i]^2+b*sum[i]+c;
设X(i)=sum[j];
B(i)=f[i]-a*sum[i]*sum[i]-b*sum[i]-c;
Y(i)=f[i]+a*sum[i]^2-b*sum[i]
K(i)=2*a*sum[i]
原式可化为Y=KX+B的形式。 之后用一个单调队列来维护即可。

代码

#include<bits/stdc++.h>
#define int long long using namespace std;
const int MAXN = 1000005; int n,sum[MAXN];
int f[MAXN];
int Q[MAXN],head,tail;
int a,b,c; inline double B(int i){return f[i]-a*sum[i]*sum[i]-b*sum[i]-c;}
inline double K(int i){return 2*a*sum[i];}
inline double X(int i){return sum[i];}
inline double Y(int i){return f[i]+a*sum[i]*sum[i]-b*sum[i];}
inline double sp(int i,int j){return 1.0*(Y(i)-Y(j))/(X(i)-X(j));} signed main(){
scanf("%lld",&n);
scanf("%lld%lld%lld",&a,&b,&c);
for(register int i=1;i<=n;i++){
int x;
scanf("%lld",&x);
sum[i]=sum[i-1]+x;
}
for(register int i=1;i<=n;i++){
while(head<tail && sp(Q[head],Q[head+1])>K(i)) head++;
f[i]=-(K(i)*X(Q[head])-Y(Q[head])-a*sum[i]*sum[i]-b*sum[i]-c);
while(head<tail && sp(Q[tail-1],Q[tail])<=sp(Q[tail],i)) tail--;
Q[++tail]=i;
}
printf("%lld",f[n]);
return 0;
}

BZOJ 1911 (APIO 2010) 特别行动队的更多相关文章

  1. [bzoj 1911][Apio 2010]特别行动队(斜率优化DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1911 分析: 首先可以的到裸的方程f[i]=max{f[j]+a*(Si-Sj)^2+b*(S ...

  2. APIO 2010 特别行动队 斜率优化DP

    Description 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 (i ...

  3. 【BZOJ 1911】 [Apio2010]特别行动队

    Description Input Output Sample Input 4 -1 10 -20 2 2 3 4 Sample Output 9 HINT   转移方程 f[i]=max(f[j]+ ...

  4. [APIO 2010] 特别行动队

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1911 [算法] 设前i个士兵"修正"后的最大战斗力为fi 令su ...

  5. 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)

    dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...

  6. 【BZOJ】【1911】【APIO2010】特别行动队commando

    DP/斜率优化 嗯……第三道斜率优化的题目了. 定义 $s[i]=\sum_{k=1}^{i} x[k] $ 方程:$f[i]=max\{ f[j]+a*(s[i]-s[j])^2+b*(s[i]-s ...

  7. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  8. 【斜率DP】BZOJ 1911:特别行动队

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3006  Solved: 1360[Submit][Statu ...

  9. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

随机推荐

  1. oh my zsh 如何启用插件

    注 根据自己的需求启用插件.但是,插件具体实现什么功能就得自己看啦. 官网说明 实践 其实默认oh my zsh(以下简称zsh)已经在安装的时候就帮我们下载好了所有插件,只不过需要用户自己选择启用哪 ...

  2. jQuery笔记(事件绑定和解绑)

    事件绑定一.bind()1.传两参数 第一个参数是事件名,第二个是事件处理函数2.传键值对(对象) <body> <input type="button" val ...

  3. 框架集 frameset

    框架集和内联框架的作用类似,都用于在一个页面中引入其他的外部的页面 框架集可以同时引入多个页面,而内联框架引入一个, 在h5标准中,推荐使用框架集,而不使用内联框架 使用 frameset 来创建一个 ...

  4. IDEA 创建Spring cloud Eureka 注册中心

    IDEA 创建Spring cloud Eureka 注册中心 一. 首先创建一个maven project Next之后填好groupId与artifactId,Next之后填好项目名与路径,点击F ...

  5. Tomcat服务器优化(内存,并发连接数,缓存)

    a) 内存优化:主要是对Tomcat启动参数进行优化,我们可以在Tomcat启动脚本中修改它的最大内存数等等.b) 线程数优化:Tomcat的并发连接参数,主要在Tomcat配置文件中server.x ...

  6. 关于MySQL的insert添加自动获取日期的now()的用法

    例如我的MySQL数据库里有个表table1,它的字段有id,date1,date2,除id外都是Datetime类型的.那么插值语句这样写:insert into table1(date1,date ...

  7. js正则判断实现18位数字

    js实现18位数字 var stuCardReg = /^[0-9]{18}/; var stuCard = $('.inp).val();//获取input框中的数值 if (!stuCardReg ...

  8. H5调用百度地图导航

    template <div class="map"> <div class="content_flex"><img src=&qu ...

  9. Hbase和Hive在大数据架构中处在不同位置

    先放结论:Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决数据处理和计算问题,一般是配合使用.一.区别:Hbase: Hadoop database ...

  10. MTT学习小记

    这是个毒瘤题才有的毒瘤东西--奶一口NOI不考 拆系数FFT: 考虑做NTT时模数不是NTT模数(\(2^a*b+1\))怎么办? 很容易想到拆次数FFT. 比如说现在求\(a*b\),设\(m=\s ...