elasticsearch数据组织结构
elasticsearch数据组织结构
1. mapping
1.1. 简介
mapping:意为映射关系,特别是指组织结构。在此语境中可理解为数据结构,包括表结构,表约束,数据类型等。(非母语环境伤不起。。。晦涩无比,半小时才转过圈来)
1.2. mapping type
每个索引都有一个映射类型,它决定文档索引的方式。
映射类型分为两种:
- 元字段:_index,_type,_id,_source
- 值字段或属性:
值字段数据类型—相当于mysql的数据类型
有text,keywork,date,boolean,object,nested,geo_point等
具体见其它文档。
1.3. 映射约束
在一个索引中定义太多的字段可能会导致内存溢出,它并不像想象的那么少见。
有一些设置用来约束
index.mapping.total_fields.limit
索引字段数量,计数包括字段,对象映射,字段别名。默认值1000
index.mapping.depth.limit
字段最大深度,指对象引用的深度。默认为20.
index.mapping.nested_fields.limit
The maximum number of distinct nested mappings in an index, defaults to 50.
非重复的嵌套映射数量,默认50
index.mapping.nested_objects.limit
单一文档嵌套json对象的最大值,默认10000
index.mapping.field_name_length.limit
字段名的长度限制,默认无限制。
1.4. 动态映射
字段和映射类型无需提前定义。添加时会自动创建。
在顶层映射、内部对象及nested字段上都会如此。
1.5. 显示映射explicit mapping
设置命令语法:
PUT /<index>/_mapping
创建index并指定映射
curl -X PUT "localhost:9200/my-index?pretty" -H 'Content-Type: application/json' -d'
{
"mappings": {
"properties": {
"age": { "type": "integer" },
"email": { "type": "keyword" },
"name": { "type": "text" }
}
}
}
'
为一个映射添加字段
案例:
curl -X PUT "localhost:9200/my-index/_mapping?pretty" -H 'Content-Type: application/json' -d'
{
"properties": {
"employee-id": { # 字段名
"type": "keyword", # 字段类型
"index": false # 代表此字段不参与index
}
}
}
注意:
已存在的映射是不能修改的,下述项例外:
- 为object字段添加属性
- ignore_above的值是可以改的。
修改已存在的映射会使已有索引数据失效。如果想修改映组织关系,创建新的index并reindex数据。如果只是想修改字段名,建议添加别名字段。
1.6. 相关命令
查看索引的映射
GET /my-index/_mapping
rv = es.indices.get_mapping(index_name)
1.7. 注意事项
_doc问题
7.X及以后版本并没有type参数,但在7.x中部分命令的type位置需要写成_doc。
2. field datatypes
Elasticsearch supports a number of different datatypes for the fields in a document:
-----Core datatypes
2.1. string
text and keyword
2.1.1. text
它会被解析为individual terms before being indexed.
2.1.2. keyword
用于索引结构化内容的字段,例如email addresses, hostnames, status code.
案例
PUT my_index
{
"mappings": {
"properties": {
"tags": {
"type": "keyword"
}
}
}
}
2.2. Numeric
long, integer, short, byte, double, float, half_float, scaled_float
2.3. Date
date
2.4. Date nanoseconds
date_nanos
2.5. Boolean
boolean
2.6. Binary
binary
2.7. Range
integer_range, float_range, long_range, double_range, date_range
------Complex datatypes
2.8. Object
object for single JSON objects
2.9. Nested
nested for arrays of JSON objects
3. meta-field元字段
每个文档都有自己的元字段。
3.1. identity meta-fields
_index
_type
_id
3.2. document source meta-fields
_source:源JSON数据
_size:_source的大小,单位bytes,provided by the mapper-size plugin.
3.3. indexing meta-fields
_fields_names
_igonred
3.4. routing meta-field
_routing
3.5. other meta-field
_meta
4. analyzer
document: https://www.elastic.co/guide/en/elasticsearch/reference/current/analyzer.html
下面是一个设置索引分词器参数及应用的案例:
PUT my_index
{
"settings":{
"analysis":{
"analyzer":{
"my_analyzer":{
"type":"custom",
"tokenizer":"standard",
"filter":[
"lowercase"
]
},
"my_stop_analyzer":{
"type":"custom",
"tokenizer":"standard",
"filter":[
"lowercase",
"english_stop"
]
}
},
"filter":{
"english_stop":{
"type":"stop",
"stopwords":"_english_"
}
}
}
},
"mappings":{
"properties":{
"title": {
"type":"text",
"analyzer":"my_analyzer",
"search_analyzer":"my_stop_analyzer",
"search_quote_analyzer":"my_analyzer"
}
}
}
}
PUT my_index/_doc/1
{
"title":"The Quick Brown Fox"
}
PUT my_index/_doc/2
{
"title":"A Quick Brown Fox"
}
GET my_index/_search
{
"query":{
"query_string":{
"query":"\"the quick brown fox\""
}
}
}
elasticsearch数据组织结构的更多相关文章
- 【原创】大叔经验分享(26)hive通过外部表读写elasticsearch数据
hive通过外部表读写elasticsearch数据,和读写hbase数据差不多,差别是需要下载elasticsearch-hadoop-hive-6.6.2.jar,然后使用其中的EsStorage ...
- Oracle和Elasticsearch数据同步
Python编写Oracle和Elasticsearch数据同步脚本 标签: elasticsearchoraclecx_Oraclepython数据同步 Python知识库 一.版本 Pyth ...
- elasticsearch数据备份还原
elasticsearch数据备份还原 1.在浏览器中运行http://XXX.XXX.XXX.XXX:9200/_flush,确保索引数据能保存到硬盘中. 2.原数据的备份.主要是elasticse ...
- 18-10-15 服务器删除数据的方法【Elasticsearch 数据删除 (delete_by_query 插件安装使用)】方法二没有成功
rpa 都是5.xx ueba 分为2.0 或者5.0 上海吴工删除数据的方法 在许多项目中,用户提供的数据存储盘大小有限,在运行一段时间后,大小不够就需要删除历史的 Elasticsearch 数 ...
- [转] [Elasticsearch] 数据建模 - 处理关联关系(1)
[Elasticsearch] 数据建模 - 处理关联关系(1) 标签: 建模elasticsearch搜索搜索引擎 2015-08-16 23:55 6958人阅读 评论(0) 收藏 举报 分类: ...
- 服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana
服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana https://www.cnblogs.com/xishuai/p/elk- ...
- 【原创】MapReduce备份Elasticsearch数据到HDFS(JAVA)
一.环境:JAVA8,Elasticsearch-5.6.2,Hadoop-2.8.1二.实现功能:mapreduce读elasticsearch数据.输出parquet文件.多输出路径三.主要依赖 ...
- 大数据学习[16]--使用scroll实现Elasticsearch数据遍历和深度分页[转]
题目:使用scroll实现Elasticsearch数据遍历和深度分页 作者:星爷 出处: http://lxWei.github.io/posts/%E4%BD%BF%E7%94%A8scroll% ...
- 基于 MySQL Binlog 的 Elasticsearch 数据同步实践 原
一.背景 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数据可以 ...
随机推荐
- Junit +cucumber 运行报错 initiallizationError
step1: 访问 https://search.maven.org/ 搜索下载相关jar包 step2: 访问 http://maven.outofmemory.cn/info.cukes/cuc ...
- 1025 PAT Ranking (25分)
1025 PAT Ranking (25分) 1. 题目 2. 思路 设置结构体, 先对每一个local排序,再整合后排序 3. 注意点 整体排序时注意如果分数相同的情况下还要按照编号排序 4. 代码 ...
- [前端] html限制input输入数字和小数
限制input只能输入数字和小数 html代码 <input type="text" style="width:50px" name="widt ...
- 题解 【Codeforces387B】George and Round
以下选自官方题解: 考虑困难的需求数量,我们将覆盖这些困难, 然后我们将提出新的问题,并准备新的问题来覆盖其他需求. 很明显,如果我们决定满足从n中抽取i的要求,那么最好采用那些复杂性最小的要求. 让 ...
- node 崩 处理
node_modules->bin webpack-dev-server.cmd @IF EXIST "%~dp0\node.exe" ( "%~dp0\node. ...
- Attribute "resultType" must be declared for element type "update" or "insert"
仔细查看错误如图所示: 解决错误就是把resultType去掉,因为在insert和update语句中是没有返回值的.小坑小坑 转自:https://blog.csdn.net/u013144287/ ...
- opencv:形态学操作-开闭操作
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...
- bugku 多种方法解决
首先打开链接发现是一个exe文件 实在是想不出办法了 只能回去看提示 说会有一张图片 不知道怎么就打开了hxd 然后拖进去 发现了一串 用图片base64加密的码 然后在网页中找到 解码 工具 htt ...
- 关于mybatis中多参数传值
如果前台单独传递多个参数,并且未进行封装,在mybatis的sql映射文件中需要以下标的形式表示传递的参数,从0开始 即:where name=#{0} and password =#{1}:0表示第 ...
- Spring - 周边设施 - H2 数据库启动时写入数据
1. 概述 之前讲到了 H2 的引入 这下我想说说 H2 启动时的 数据导入 2. 场景 需求 启动项目后, H2 启动起来 环境数据会自动注入 H2 数据库 可以验证是否成功 3. 环境 os wi ...