1. LFU

1.1. 原理

LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

1.2. 实现

LFU的每个数据块都有一个引用计数,所有数据块按照引用计数排序,具有相同引用计数的数据块则按照时间排序。

具体实现如下:

1. 新加入数据插入到队列尾部(因为引用计数为1);

2. 队列中的数据被访问后,引用计数增加,队列重新排序;

3. 当需要淘汰数据时,将已经排序的列表最后的数据块删除。

1.3. 分析

l 命中率

一般情况下,LFU效率要优于LRU,且能够避免周期性或者偶发性的操作导致缓存命中率下降的问题。但LFU需要记录数据的历史访问记录,一旦数据访问模式改变,LFU需要更长时间来适用新的访问模式,即:LFU存在历史数据影响将来数据的“缓存污染”效用。

l 复杂度

需要维护一个队列记录所有数据的访问记录,每个数据都需要维护引用计数。

l 代价

需要记录所有数据的访问记录,内存消耗较高;需要基于引用计数排序,性能消耗较高。

2. LRU
2.1. 原理

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

2.2. 实现

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下:

1. 新数据插入到链表头部;

2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;

3. 当链表满的时候,将链表尾部的数据丢弃。

2.3. 分析

【命中率】

当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。

【复杂度】

实现简单。

【代价】

命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

3. LRU-K

3.1. 原理

LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。

3.2. 实现

相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:

1. 数据第一次被访问,加入到访问历史列表;

2. 如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;

3. 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;

4. 缓存数据队列中被再次访问后,重新排序;

5. 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。

LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

3.3. 分析

【命中率】

LRU-K降低了“缓存污染”带来的问题,命中率比LRU要高。

【复杂度】

LRU-K队列是一个优先级队列,算法复杂度和代价比较高。

【代价】

由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多;当数据量很大的时候,内存消耗会比较可观。

LRU-K需要基于时间进行排序(可以需要淘汰时再排序,也可以即时排序),CPU消耗比LRU要高。

两种常见的缓存淘汰算法LFU&LRU的更多相关文章

  1. 两种缓存淘汰算法LFU&LRU

    LRU全称是Least Recently Used,即最近最久未使用的意思. LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已 ...

  2. 缓存淘汰算法之LRU

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. ...

  3. 缓存淘汰算法之LRU实现

    Java中最简单的LRU算法实现,就是利用 LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可 如果你去看LinkedHashMap的源码可知,LR ...

  4. 图解缓存淘汰算法二之LFU

    1.概念分析 LFU(Least Frequently Used)即最近最不常用.从名字上来分析,这是一个基于访问频率的算法.与LRU不同,LRU是基于时间的,会将时间上最不常访问的数据淘汰;LFU为 ...

  5. 昨天面试被问到的 缓存淘汰算法FIFO、LRU、LFU及Java实现

    缓存淘汰算法 在高并发.高性能的质量要求不断提高时,我们首先会想到的就是利用缓存予以应对. 第一次请求时把计算好的结果存放在缓存中,下次遇到同样的请求时,把之前保存在缓存中的数据直接拿来使用. 但是, ...

  6. 04 | 链表(上):如何实现LRU缓存淘汰算法?

    今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是+LRU+缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...

  7. 数据结构与算法之美 06 | 链表(上)-如何实现LRU缓存淘汰算法

    常见的缓存淘汰策略: 先进先出 FIFO 最少使用LFU(Least Frequently Used) 最近最少使用 LRU(Least Recently Used) 链表定义: 链表也是线性表的一种 ...

  8. 链表:如何实现LRU缓存淘汰算法?

    缓存淘汰策略: FIFO:先入先出策略 LFU:最少使用策略 LRU:最近最少使用策略   链表的数据结构: 可以看到,数组需要连续的内存空间,当内存空间充足但不连续时,也会申请失败触发GC,链表则可 ...

  9. 《数据结构与算法之美》 <04>链表(上):如何实现LRU缓存淘汰算法?

    今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是 LRU 缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...

随机推荐

  1. 使用哈工大LTP进行文本命名实体识别并保存到txt

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/broccoli2/article/det ...

  2. 通过JS操作CSS

    动态效果如图所示: 第一种实现方法: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...

  3. F4NNIU 整理的 docker-compose 几个常用命令

    F4NNIU 整理的 docker-compose 几个常用命令 up 创建并启动一个容器. 记录一下,如果已经有容器,up 和 start 都可以启动容器,up 可以看到调试窗口,但是 start ...

  4. iOS 避免循环导入及自定义控件delegate和protocol的相互引用的问题

    在OC中一般来说ClassA同ClassB想要避免重复import的话两种方案 1. 若ClassA.h 头文件中已经导入了ClassB,即#import "ClassB.h" , ...

  5. Person Re-identification 系列论文笔记(三):Improving Person Re-identification by Attribute and Identity Learning

    Improving Person Re-identification by Attribute and Identity Learning Lin Y, Zheng L, Zheng Z, et al ...

  6. shell学习(16)- 压缩和解压缩命令tar和zip

    tar命令 [root@Linux ~]# tar [-cxtzjvfpPN] 文件与目录 .... 参数: -c :建立一个压缩文件的参数指令(create 的意思): -x :解开一个压缩文件的参 ...

  7. hibernate 出现Caused by: java.sql.SQLException: Column 'id' not found.异常

    用hibernate进行映射查询时,出现Caused by: java.sql.SQLException: Column 'id' not found 异常,检查数据库表及映射都有id且已经正确映射, ...

  8. idea 使用优化

    1.创建类的模板 /** * Copyright (C), 2015-${YEAR}, XXX有限公司 * FileName: ${NAME} * Author: ${USER} * Date: ${ ...

  9. Flask学习之六 个人资料和头像

    英文博客地址:http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-vi-profile-page-and-avatars ...

  10. 洛谷P1049 装箱问题

    //01背包 价值等于体积 求所剩最小体积 #include<bits/stdc++.h> using namespace std; ; ; int c,n,v[maxn],f[maxv] ...