问题描述

LG4035

BZOJ1013


题解

设答案为\((p_1,p_2,p_3,...,p_n)\)

因为是一个球体,令其半径为\(r\),则有

\[\sum_{i=1}^{n}{(a_i-p_i)}^2={\rm dis}^2
\]

拆式子可得

\[\sum_{i=1}^{n}a_i^2-2\times\sum_{i=1}^{n}{a_ip_i}=\sum_{i=1}^{n}p_i^2-{\rm dis}^2
\]

于是可以构造出新的方程矩阵:

\[f_{i,j}=2 \times (a_{i+1,j}-a_{i,j})
\]

\[f_{i,n+1}=\sum_{j=1}^n a_{i+1,j}^2-a_{i,j}^2
\]


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; void read(int &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') fh=-1,ch=getchar();
else fh=1;
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=fh;
} #define maxn 107 int n; double a[maxn][maxn],bf[maxn][maxn]; int pla; int main(){
ios::sync_with_stdio(0);
cin>>n;
for(register int i=1;i<=n+1;i++){
for(register int j=1;j<=n;j++) cin>>bf[i][j];
}
for(register int i=1;i<=n+1;i++){
for(register int j=1;j<=n;j++){
a[i][j]=2*(bf[i+1][j]-bf[i][j]);
a[i][n+1]+=bf[i+1][j]*bf[i+1][j]-bf[i][j]*bf[i][j];
}
}
for(register int i=1;i<=n;i++){
pla=i;
while(pla<=n&&a[pla][i]==0) pla++;
if(pla==n+1){
puts("No Solution");return 0;
}
for(register int j=1;j<=n+1;j++) swap(a[i][j],a[pla][j]);
double tmp=a[i][i];
for(register int j=1;j<=n+1;j++) a[i][j]=a[i][j]/tmp;
for(register int j=1;j<=n;j++){
if(i==j) continue;
double rp=a[j][i];
for(register int k=1;k<=n+1;k++){
a[j][k]=a[j][k]-rp*a[i][k];
}
}
}
for(register int i=1;i<=n;i++){
cout<<fixed<<setprecision(3)<<a[i][n+1]<<" ";
}
return 0;
}

LG4035/BZOJ1013 「JSOI2008」球形空间产生器 高斯消元的更多相关文章

  1. 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元

    题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...

  2. BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)

    题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...

  3. LG2447/BZOJ1923 「SDOI2010」外星千足虫 高斯消元

    问题描述 LG2447 BZOJ1923 题解 显然是一个高斯消元,但是求的东西比较奇怪 发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor来进行消元操 ...

  4. BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】

    BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...

  5. 【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1600  Solved: 860[Submi ...

  6. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  7. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  8. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  9. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

随机推荐

  1. [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  2. github上计算String相似度好的项目

    项目中包含了杰卡德NGram.cosin夹角.最长公共子序列.边际距离等常用的相似度算法. https://github.com/tdebatty/java-string-similarity

  3. 第02组 Beta冲刺(2/5)

    队名:無駄無駄 组长博客 作业博客 组员情况 张越洋 过去两天完成了哪些任务 数据库实践 提交记录(全组共用) 接下来的计划 加快校园百科的进度 还剩下哪些任务 学习软工的理论课 学习代码评估.测试 ...

  4. LeetCode 430:扁平化多级双向链表 Flatten a Multilevel Doubly Linked List

    您将获得一个双向链表,除了下一个和前一个指针之外,它还有一个子指针,可能指向单独的双向链表.这些子列表可能有一个或多个自己的子项,依此类推,生成多级数据结构,如下面的示例所示. 扁平化列表,使所有结点 ...

  5. 使用k8s-prometheus-adapter实现HPA

    环境: kubernetes 1.11+/openshift3.11 自定义metric HPA原理: 首选需要注册一个apiservice(custom metrics API). 当HPA请求me ...

  6. CSS3实现文字描边的2种方法

    问题 最近遇到一个需求,需要实现文字的描边效果,如下图           解决方法一     首先想到去看CSS3有没有什么属性可以实现,后来被我找到了text-stroke     该属性是一个复 ...

  7. Theano 报错:No suitable SharedVariable constructor could be found. Are you sure all kwargs are supported? We do not support the parameter dtype or type

    当Theano报错:No suitable SharedVariable constructor could be found. Are you sure all kwargs are support ...

  8. redis命令之 ----key(键)

    DEL DEL key [key ...] 删除给定的一个或多个 key . 不存在的 key 会被忽略. DUMP DUMP key 序列化给定 key ,并返回被序列化的值,使用 RESTORE  ...

  9. hdu-6071 Lazy Running

    In HDU, you have to run along the campus for 24 times, or you will fail in PE. According to the rule ...

  10. matplotlib的使用——pie(饼图)的使用

    在我们进行数据分析的时候需要对得出的数据进行可视化,因此我们需要引入第三方包来帮助我们进行可视化分析,在这里使用matplotlib 一.安装 使用指令[pip install matplotlib] ...