matplotlib实例笔记
下面的图型是在一幅画布上建立的四个球员相关数据的极坐标图

关于这个图的代码如下:
#_*_coding:utf-8_*_
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
plt.style.use('ggplot') font=FontProperties(fname=r'c:\windows\fonts\simsun.ttc',size=12)
# 本行是为了有效显示中文的字体与大小 ability_size=6
ability_label=['进攻','防守','盘带','速度','体力','射术'] # 创建每个极坐标的位置
ax1=plt.subplot(221,projection='polar')
ax2=plt.subplot(222,projection='polar')
ax3=plt.subplot(223,projection='polar')
ax4=plt.subplot(224,projection='polar') player={
'M': np.random.randint(size=ability_size, low=60, high=99),
'H': np.random.randint(size=ability_size, low=60, high=99),
'P': np.random.randint(size=ability_size, low=60, high=99),
'Q': np.random.randint(size=ability_size, low=60, high=99),
} theta=np.linspace(0,2*np.pi,6,endpoint=False)
theta=np.append(theta,theta[0]) #下面分别画四个球员的能力极坐标图
player['M']=np.append(player['M'],player['M'][0])
ax1.plot(theta,player['M'],'r')
ax1.fill(theta,player['M'],'r',alpha=0.3)
ax1.set_xticks(theta)
ax1.set_xticklabels(ability_label,fontproperties=font)
ax1.set_title('梅西',fontproperties=font,color='r',size=20)
ax1.set_yticks([20,40,60,80,100]) player['H']=np.append(player['H'],player['H'][0])
ax2.plot(theta,player['H'],'g')
ax2.fill(theta,player['H'],'g',alpha=0.3)
ax2.set_xticks(theta)
ax2.set_xticklabels(ability_label,fontproperties=font)
ax2.set_title('哈维',fontproperties=font,color='g',size=20)
ax2.set_yticks([20,40,60,80,100]) player['P']=np.append(player['P'],player['P'][0])
ax3.plot(theta,player['P'],'b')
ax3.fill(theta,player['P'],'b',alpha=0.3)
ax3.set_xticks(theta)
ax3.set_xticklabels(ability_label,fontproperties=font)
ax3.set_title('皮克',fontproperties=font,color='b',size=20)
ax3.set_yticks([20,40,60,80,100]) player['Q']=np.append(player['Q'],player['Q'][0])
ax4.plot(theta,player['Q'],'y')
ax4.fill(theta,player['Q'],'y',alpha=0.3)
ax4.set_xticks(theta)
ax4.set_xticklabels(ability_label,fontproperties=font)
ax4.set_title('切赫',fontproperties=font,color='y',size=20)
ax4.set_yticks([20,40,60,80,100]) plt.show()
上述代码也可以利用for循环简化一下
#_*_coding:utf-8_*_
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
plt.style.use('ggplot') font=FontProperties(fname=r'c:\windows\fonts\simsun.ttc',size=12) ability_size=6
ability_label=['进攻','防守','盘带','速度','体力','射术'] ax1=plt.subplot(221,projection='polar')
ax2=plt.subplot(222,projection='polar')
ax3=plt.subplot(223,projection='polar')
ax4=plt.subplot(224,projection='polar') player={
'M': np.random.randint(size=ability_size, low=60, high=99),
'H': np.random.randint(size=ability_size, low=60, high=99),
'P': np.random.randint(size=ability_size, low=60, high=99),
'Q': np.random.randint(size=ability_size, low=60, high=99),
} theta=np.linspace(0,2*np.pi,6,endpoint=False)
theta=np.append(theta,theta[0]) color4=['r','b','g','y']
player4=['M','H','P','Q']
ax=[ax1,ax2,ax3,ax4]
name=['梅西','哈维','皮克','切赫']
for i in range(4):
player[player4[i]]=np.append(player[player4[i]],player[player4[i]][0])
ax[i].plot(theta,player[player4[i]],color4[i])
ax[i].fill(theta,player[player4[i]],color4[i],alpha=0.3)
ax[i].set_xticks(theta)
ax[i].set_xticklabels(ability_label,fontproperties=font)
ax[i].set_title(name[i],fontproperties=font,color=color4[i],size=20)
ax[i].set_yticks([20,40,60,80,100]) plt.show()
matplotlib实例笔记的更多相关文章
- SVN版本库(访问权限)配置实例笔记
http://blog.csdn.net/zjianbo/article/details/8578297 SVN版本库(访问权限)配置实例笔记 本系列文章由ex_net(张建波)编写,转载请注明出处. ...
- Matplotlib学习笔记(二)
原 Matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .car ...
- Matplotlib学习笔记(一)
原 matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .ca ...
- matplotlib学习笔记.CookBook
matplotlib 是Python下的一个高质量的画图库,可以简单的类似于MATLAB方法构建高质量的图表. 原始文章地址:http://zanyongli.i.sohu.com/blog/view ...
- Matplotlib 学习笔记
注:该文是上了开智学堂数据科学基础班的课后做的笔记,主讲人是肖凯老师. 数据绘图 数据可视化的原则 为什么要做数据可视化? 为什么要做数据可视化?因为可视化后获取信息的效率高.为什么可视化后获取信息的 ...
- matplotlib学习笔记
1.简介 matplotlib是python的一个2D绘图库,它可以在不同平台上地使用多种通用的绘图格式(hardcopy formats)和交互环境绘制出出版物质量级别的图片.matplotlib可 ...
- 科学计算和可视化(numpy及matplotlib学习笔记)
网上学习资料:https://2d.hep.com.cn/1865445/9 numpy库内容: 函数 描述 np.array([x,y,z],dtype=int) 从Python列表和元组创造数组 ...
- SQL经典实例笔记
目录 前言 第一章:检索记录 在Where字句中使用别名 前言 本文是根据我阅读的书籍SQL经典实例而写的笔记,只记载我觉得有价值的内容 第一章:检索记录 在Where字句中使用别名 --错误实例 s ...
- python画图matplotlib基础笔记
numpy~~基础计算库,多维数组处理 scipy~~基于numpy,用于数值计算等等,默认调用intel mkl(高度优化的数学库) pandas~~强大的数据框,基于numpy matplotli ...
随机推荐
- Java垃圾回收(java GC)
一.GC的阶段 对每个对象而言,垃圾回收分为两个阶段:finalization和reclamation. finalization: 指运行这个对象的finalize的方法. reclamation: ...
- C平衡二叉树(AVL)创建和删除
AVL是最先发明的自平衡二叉查找树算法.在AVL中任何节点的两个儿子子树的高度最大差别为一,所以它也被称为高度平衡树,n个结点的AVL树最大深度约1.44log2n.查找.插入和删除在平均和最坏情况下 ...
- 模型稳定性指标—PSI
由于模型是以特定时期的样本所开发的,此模型是否适用于开发样本之外的族群,必须经过稳定性测试才能得知.稳定度指标(population stability index ,PSI)可衡量测试样本及模型开发 ...
- [转发]ASP.NET Core2集成Office Online Server(OWAS)实现办公文档的在线预览与编辑(支持word\excel\ppt\pdf等格式)
转载自:https://www.cnblogs.com/Andre/p/9549874.html Office Online Server是微软开发的一套基于Office实现在线文档预览编辑的技术框架 ...
- Dart 变量、常量和命名规则
/* Dart 变量: dart是一个强大的脚本类语言,可以不预先定义变量类型 ,自动会类型推导 dart中定义变量可以通过var关键字可以通过类型来申明变量 如: var str='this is ...
- Python“文件操作”Excel篇(上)
大家好,我们今天来一起探索一下用Python怎么操作Excel文件.与word文件的操作库python-docx类似,Python也有专门的库为Excel文件的操作提供支持,这些库包括xlrd.xlw ...
- svn使用步骤
这里只是记录大概使用过程,操作步骤只供参考,不要按部就班. 1.安装SVN 服务端Setup-Subversion-1.6.5.msi和客户端TortoiseSVN-1.6.5.16974-win32 ...
- zookeeper使用过程的错误
一.zookeeper启动成功,dubbo服务也注册成功,但是服务消费者调用失败 报错如下: [myid:] - INFO [SyncThread:0:ZooKeeperServer@645] - E ...
- 软件定义网络基础---SDN数据平面
主要介绍SDN架构和转发模型 一:传统网络设备 (一)传统设备控制平面和数据平面 (二)数据平面的任务 数据平面对数据包的处理,主要通过查询由控制平面所生成的转发信息表来完成 (三)传统网络数据平面数 ...
- 【JS】jquery展示JSON插件JSONView
JSONView介绍 jQuery插件,用于显示漂亮的JSON. 官网地址:https://plugins.jquery.com/jsonview/ git地址:https://github.com/ ...