一、Spark SQL简介

Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。

为什么要学习Spark SQL?我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!同时Spark SQL也支持从Hive中读取数据。

二、Spark SQL的特点

  • 无缝集成在Spark中,将SQL查询与Spark程序混合。Spark SQL允许您使用SQL或熟悉的DataFrame API在Spark程序中查询结构化数据。适用于Java、Scala、Python和R语言。
  • 提供统一的数据访问,以相同的方式连接到任何数据源。DataFrames和SQL提供了一种访问各种数据源的通用方法,包括Hive、Avro、Parquet、ORC、JSON和JDBC。您甚至可以通过这些源连接数据。
  • 支持Hive集成。在现有仓库上运行SQL或HiveQL查询。Spark SQL支持HiveQL语法以及Hive SerDes和udf,允许您访问现有的Hive仓库。
  • 支持标准的连接,通过JDBC或ODBC连接。服务器模式为业务智能工具提供了行业标准JDBC和ODBC连接。

三、核心概念:DataFrames和Datasets

  • DataFrame

DataFrame是组织成命名列的数据集。它在概念上等同于关系数据库中的表,但在底层具有更丰富的优化。DataFrames可以从各种来源构建,例如:

  • 结构化数据文件
  • hive中的表
  • 外部数据库或现有RDDs

DataFrame API支持的语言有Scala,Java,Python和R。

从上图可以看出,DataFrame多了数据的结构信息,即schema。RDD是分布式的 Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化。

  • Datasets

Dataset是数据的分布式集合。Dataset是在Spark 1.6中添加的一个新接口,是DataFrame之上更高一级的抽象。它提供了RDD的优点(强类型化,使用强大的lambda函数的能力)以及Spark SQL优化后的执行引擎的优点。一个Dataset 可以从JVM对象构造,然后使用函数转换(map, flatMap,filter等)去操作。 Dataset API 支持Scala和Java。 Python不支持Dataset API。

四、创建DataFrames

  • 测试数据如下:员工表

  • 定义case class(相当于表的结构:Schema)
case class Emp(empno:Int,ename:String,job:String,mgr:Int,hiredate:String,sal:Int,comm:Int,deptno:Int)
  • 将HDFS上的数据读入RDD,并将RDD与case Class关联
val lines = sc.textFile("hdfs://bigdata111:9000/input/emp.csv").map(_.split(","))
  • 把每个Array映射成一个Emp的对象
val emp = lines.map(x => Emp(x(0).toInt,x(1),x(2),x(3).toInt,x(4),x(5).toInt,x(6).toInt,x(7).toInt))
  • 生成DataFrame
val allEmpDF = emp.toDF
  • 通过DataFrames查询数据

  • 将DataFrame注册成表(视图)
allEmpDF.createOrReplaceTempView("emp")
  • 执行SQL查询
spark.sql("select * from emp").show

【赵渝强老师】什么是Spark SQL?的更多相关文章

  1. 平易近人、兼容并蓄——Spark SQL 1.3.0概览

    自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQL on Hadoop解决方案之外, ...

  2. 【转载】Spark SQL 1.3.0 DataFrame介绍、使用

    http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 1.DataFrame是什么?2.如何创建DataF ...

  3. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  4. 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器

    第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...

  5. Spark SQL中的Catalyst 的工作机制

      Spark SQL中的Catalyst 的工作机制 答:不管是SQL.Hive SQL还是DataFrame.Dataset触发Action Job的时候,都会经过解析变成unresolved的逻 ...

  6. 1. Spark SQL概述

    1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用 它是将Hive SQL转换成 ...

  7. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  8. Spark SQL源码解析(二)Antlr4解析Sql并生成树

    Spark SQL原理解析前言: Spark SQL源码剖析(一)SQL解析框架Catalyst流程概述 这一次要开始真正介绍Spark解析SQL的流程,首先是从Sql Parse阶段开始,简单点说, ...

  9. 第1章 Spark SQL概述

    第1章 Spark SQL概述 1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作 ...

  10. spark SQL (一)初识 ,简介

    一, 简介 Spark SQL是用于结构化数据处理的Spark模块.与基本的Spark RDD API不同,Spark SQL提供的接口为Spark提供了关于数据结构和正在执行的计算的更多信息.在内部 ...

随机推荐

  1. pytest + allure2.x 踩坑-报告无数据

    我按照网上的教程,在用pytest生成完allure可以使用的json数据之后,然后再用allure生成报告,打开,发现我生成的报告中没有数据显示. 1.首先我用pytest生成数据是没有问题的 2. ...

  2. Cloudflare教程:如何注册账户、购买域名、开启免费CDN服务?

    Cloudflare介绍 什么是Cloudflare Cloudflare是一家总部位于旧金山的美国跨国科技企业,以向客户提供基于反向代理的内容分发网络(CDN)及分布式域名解析服务为主要业务. 目前 ...

  3. Java还是C#?我该如何选择?给年轻人的建议...

    一.年轻人应该通吃 其实这不应该是我们真正的主题,而且入了行的也很少会java还是c#这么比,但初学的,java和c#往往就代表了两大流派,java代替了j2ee,c#代替了.net,ok,没有关系, ...

  4. 【Java】比较业务实体信息变化的工具类

    一.业务需求 需要将业务表每次更新操作的前后记录进行保存,写入更新历史表中 方便用户查阅该业务记录发生的历史变化 二.代码实现 import lombok.AllArgsConstructor; im ...

  5. 【Vue】单元格合并,与动态校验

    效果要求 先看需求效果: 多个数据授权项,配置的时候,业务名称大多数都是一样的,需要合并单元格处理 在elementUI组件文档中有说明[合并列行]: https://element.eleme.io ...

  6. 一个疑问:foundation models , 现在已经有了视觉的大模型也有了语言大模型,那么什么时候会有强化学习大模型,更准确的说什么时候会有强化学习的基础模型(foundation models)

    一个疑问:foundation models , 现在已经有了视觉的大模型也有了语言大模型,那么什么时候会有强化学习大模型,更准确的说什么时候会有强化学习的基础模型(foundation models ...

  7. 《Python数据可视化之matplotlib实践》 源码 第四篇 扩展 第十章

    图 10.1 import matplotlib.pyplot as plt import numpy as np plt.axes([0.1, 0.7, 0.3, 0.3], frameon=Tru ...

  8. 自然语言处理:通过API调用各大公司的机器翻译开放平台

    国内大公司做机器翻译做的比较好的有讯飞和百度,这里给出这两个公司机器翻译的开放平台API的介绍: 讯飞开放平台: 链接:https://www.xfyun.cn/doc/nlp/xftrans_new ...

  9. 如何为华为超算平台设置cuda路径

    在提交主机上修改.bashrc文件: 第一种: 使用运行主机上的cuda环境: # CUDAexport PATH=/usr/local/cuda-11.4/bin:$PATHexport LD_LI ...

  10. vue之v-model表单绑定

    1.背景 2.简单使用 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...