局部最优的问题

在深度学习研究早期,人们总是担心优化算法会困在极差的局部最优,不过随着深度学习理论不断发展,对局部最优的理解也发生了改变。向展示一下现在怎么看待局部最优以及深度学习中的优化问题。

这是曾经人们在想到局部最优时脑海里会出现的图,也许想优化一些参数,把它们称之为\(W_{1}\)和\(W_{2}\),平面的高度就是损失函数。在图中似乎各处都分布着局部最优。梯度下降法或者某个算法可能困在一个局部最优中,而不会抵达全局最优。如果要作图计算一个数字,比如说这两个维度,就容易出现有多个不同局部最优的图,而这些低维的图曾经影响了的理解,但是这些理解并不正确。事实上,如果要创建一个神经网络,通常梯度为零的点并不是这个图中的局部最优点,实际上成本函数的零梯度点,通常是鞍点。

也就是在这个点,这里是\(W_{1}\)和\(W_{2}\),高度即成本函数\(J\)的值。

但是一个具有高维度空间的函数,如果梯度为0,那么在每个方向,它可能是凸函数,也可能是凹函数。如果在2万维空间中,那么想要得到局部最优,所有的2万个方向都需要是这样,但发生的机率也许很小,也许是\(2^{-20000}\),更有可能遇到有些方向的曲线会这样向上弯曲,另一些方向曲线向下弯,而不是所有的都向上弯曲,因此在高维度空间,更可能碰到鞍点。

就像下面的这种:

而不会碰到局部最优。至于为什么会把一个曲面叫做鞍点,想象一下,就像是放在马背上的马鞍一样,如果这是马,这是马的头,这就是马的眼睛,画得不好请多包涵,然后就是骑马的人,要坐在马鞍上,因此这里的这个点,导数为0的点,这个点叫做鞍点。想那确实是坐在马鞍上的那个点,而这里导数为0。

所以从深度学习历史中学到的一课就是,对低维度空间的大部分直觉,比如可以画出上面的图,并不能应用到高维度空间中。适用于其它算法,因为如果有2万个参数,那么\(J\)函数有2万个维度向量,更可能遇到鞍点,而不是局部最优点。

如果局部最优不是问题,那么问题是什么?结果是平稳段会减缓学习,平稳段是一块区域,其中导数长时间接近于0,如果在此处,梯度会从曲面从从上向下下降,因为梯度等于或接近0,曲面很平坦,得花上很长时间慢慢抵达平稳段的这个点,因为左边或右边的随机扰动。

可以沿着这段长坡走,直到这里,然后走出平稳段。

所以此篇博客的要点是,首先,不太可能困在极差的局部最优中,条件是在训练较大的神经网络,存在大量参数,并且成本函数\(J\)被定义在较高的维度空间。

第二点,平稳段是一个问题,这样使得学习十分缓慢,这也是像Momentum或是RMSpropAdam这样的算法,能够加速学习算法的地方。在这些情况下,更成熟的优化算法,如Adam算法,能够加快速度,让尽早往下走出平稳段。

因为的网络要解决优化问题,说实话,要面临如此之高的维度空间,觉得没有人有那么好的直觉,知道这些空间长什么样,而且对它们的理解还在不断发展,不过希望这一点能够让更好地理解优化算法所面临的问题。

神经网络优化篇:详解局部最优的问题(The problem of local optima)的更多相关文章

  1. 走向DBA[MSSQL篇] 详解游标

    原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...

  2. JVM的垃圾回收机制详解和调优

    JVM的垃圾回收机制详解和调优 gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存.java语言并不要求jvm有gc,也没有规定gc如何工作.不过常用的jvm都有gc,而且大多数gc都 ...

  3. PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明

    PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...

  4. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  5. 【Kafka】Kafka-配置参数详解-参数调优

    Kafka-配置参数详解-参数调优 kafka 目录_百度搜索 为什么kafka使用磁盘而不是内存 - CSDN博客 Kafka 配置说明 - 風吹云动 - 博客园 kafka生产服务器配置 - Or ...

  6. CentOS 7 下编译安装lnmp之PHP篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...

  7. CentOS 7 下编译安装lnmp之MySQL篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...

  8. CentOS 7 下编译安装lnmp之nginx篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168   ...

  9. Canal:同步mysql增量数据工具,一篇详解核心知识点

    老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...

  10. java提高篇-----详解java的四舍五入与保留位

    转载:http://blog.csdn.net/chenssy/article/details/12719811 四舍五入是我们小学的数学问题,这个问题对于我们程序猿来说就类似于1到10的加减乘除那么 ...

随机推荐

  1. 【JMM内存模型-4】JMM内存模型之CPU缓存策略-jmmcpu4

    title: [JMM内存模型-4]JMM内存模型之CPU缓存策略 date: 2021-11-17 13:27:48.139 updated: 2021-12-26 17:43:10.442 url ...

  2. Sliver 二开准备

    cs被杀麻了,最近打算看看一下sliver的源码进行一下二开,这篇是记录遇到的一些问题 编译sliver Windows下 官方说用MingW,但是我自己用他带的make不行, ​​ ‍ 下载make ...

  3. c#5.0/6.0/7.0

    发现很多.net 程序员水平一直停留在c#3.0阶段,现在来整理下c#5.0/6.0/7.0新语法新特性. 人生需要不断充电,不断去get新技能而不是固步自封,对于我自己而言,虽不盲目追求新技术,但每 ...

  4. Ynoi

    P4688 [Ynoi2016] 掉进兔子洞 序列,静态,求三个区间的可重集的交的大小,离线,\(n,Q\le 10^5\),3s,500MB 缺乏性质 \(\rightarrow\) bitset ...

  5. Implicit隐式渲染入门 SDF SphereTracing

    Implicit 何为隐式?隐式(Implicit)的是显式(explicit)的反义词. explicit可以简单理解为用网格等信息描述的几何形状,网格信息是离散的,信息量越大描述越精准.Impli ...

  6. 监控cpu高的进程shell

    #!/bin/bash while [ 1 ]do ps aux|awk '{if($3>10){print $3" => "$0}}' sleep 0.5sdone

  7. 花了1块钱体验一把最近很火的ChatGPT

    前言 最近 OpenAI 发布了 ChatGPT,一经发布就在科技圈火得不行. ChatGPT是什么呢? 简单得说,ChatGPT,是一种基于对话的 AI 聊天工具.我们来看看ChatGPT自己得回答 ...

  8. 第九部分_Shell脚本之case语句

    case语句 关键词:确认过眼神,你是对的人 case语句为多重匹配语句 如果匹配成功,执行相匹配的命令 1. 语法结构 说明:pattern表示需要匹配的模式 case var in #定义变量;v ...

  9. 《华为云DTSE》期刊2023年第二季—HDC.Cloud 2023专刊

    本文分享自华为云社区<<华为云DTSE>期刊2023年第二季-HDC.Cloud 2023专刊>,作者: HuaweiCloudDeveloper . AI技术风起云涌,百家争 ...

  10. openGemini内核源码正式对外开源

    摘要:openGemini是一个开源的分布式时序数据库系统,可广泛应用于物联网.车联网.运维监控.工业互联网等业务场景,具备卓越的读写性能和高效的数据分析能力. 本文分享自华为云社区<华为云面向 ...