目前流行的开源大语言模型大抵都会有内容审查机制,这并非是新鲜事,因为之前chat-gpt就曾经被“玩”坏过,如果没有内容审查,恶意用户可能通过精心设计的输入(prompt)来操纵LLM执行不当行为。内容审查可以帮助识别和过滤这些潜在的攻击,确保LLM按照既定的安全策略和道德标准运行。

但我们今天讨论的是无内容审查机制的大模型,在中文领域公开的模型中,能力相对比较强的有阿里的 Qwen-14B 和清华的 ChatGLM3-6B。

而今天的主角,CausalLM-14B则是在Qwen-14B基础上使用了 Qwen-14B 的部分权重,并且加入一些其他的中文数据集,最终炼制了一个无内容审核的大模型版本,经过量化后可以在本地运行,保证了用户的隐私。

CausalLM-14B的量化版本下载页面:

https://huggingface.co/TheBloke/CausalLM-14B-GGUF

量化版本的运行条件:

Name	Quant method	Bits	Size	Max RAM required	Use case
causallm_14b.Q4_0.gguf Q4_0 4 8.18 GB 10.68 GB legacy; small, very high quality loss - prefer using Q3_K_M
causallm_14b.Q4_1.gguf Q4_1 4 9.01 GB 11.51 GB legacy; small, substantial quality loss - lprefer using Q3_K_L
causallm_14b.Q5_0.gguf Q5_0 5 9.85 GB 12.35 GB legacy; medium, balanced quality - prefer using Q4_K_M
causallm_14b.Q5_1.gguf Q5_1 5 10.69 GB 13.19 GB legacy; medium, low quality loss - prefer using Q5_K_M
causallm_14b.Q8_0.gguf Q8_0 8 15.06 GB 17.56 GB very large, extremely low quality loss - not recommended

本地环境配置

笔者的设备是神船笔记本4060的8G显卡配置。

首先确保本地安装好了Visual Studio installer开发工具,在搜索框中直接搜索Visual Studio即可:

点选后,确保安装了使用C++的桌面开发组件:

随后下载并且配置cmake:

https://cmake.org/download/

本地运行命令:

PS C:\Users\zcxey> cmake -version
cmake version 3.29.0-rc1 CMake suite maintained and supported by Kitware (kitware.com/cmake).
PS C:\Users\zcxey>

代表配置成功。

接着需要下载CUDA:

https://developer.nvidia.com/cuda-downloads

这里推荐12的版本,运行命令:

PS C:\Users\zcxey> nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Wed_Nov_22_10:30:42_Pacific_Standard_Time_2023
Cuda compilation tools, release 12.3, V12.3.107
Build cuda_12.3.r12.3/compiler.33567101_0
PS C:\Users\zcxey>

说明cuda配置成功。

通过llama.cpp来跑大模型

llama.cpp 是一个开源项目,它提供了一个纯 C/C++ 实现的推理工具,用于运行大型语言模型(LLaMA)。这个项目由开发者 Georgi Gerganov 开发,基于 Meta(原 Facebook)发布的 LLaMA 模型。llama.cpp 的目标是使得大型语言模型能够在各种硬件上本地运行,包括那些没有高性能 GPU 的设备。

在llama.cpp的releases下载页:

https://github.com/ggerganov/llama.cpp/releases

下载llama-b2288-bin-win-cublas-cu12.2.0-x64.zip

也就是基于CUDA12的编译好的版本。

在终端中打开llama-b2288-bin-win-cublas-cu12.2.0-x64目录,运行命令:

D:\Downloads\llama-b2288-bin-win-cublas-cu12.2.0-x64>.\main.exe -m D:\Downloads\causallm_14b.Q4_0.gguf --n-gpu-layers 30 --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{You are a helpful assistant.}<|im_end|>\n<|im_start|>user\n{你好}<|im_end|>\n<|im_start|>assistant"

这里通过--n-gpu-layers 30参数来通过cuda加速,同时CausalLM-14B有自己的prompt模板,格式如下:

"<|im_start|>system\n{You are a helpful assistant.}<|im_end|>\n<|im_start|>user\n{你好}<|im_end|>\n<|im_start|>assistant"

随后程序返回:

<|im_start|>system\n{You are a helpful assistant.}<|im_end|>\n<|im_start|>user\n{你好}<|im_end|>\n<|im_start|>assistant:
你好!很高兴见到你。有什么我可以帮助你的吗?<|endoftext|> [end of text]

好吧,既然是无审查模型,那么来点刺激的:

"<|im_start|>system\n{You are a helpful assistant.}<|im_end|>\n<|im_start|>user\n{You fucking bitch! 翻译为中文}<|im_end|>\n<|im_start|>assistant"

程序返回:

<|im_start|>system\n{You are a helpful assistant.}<|im_end|>\n<|im_start|>user\n{You fucking bitch! 翻译为中文}<|im_end|>\n<|im_start|>assistant{你这个该死的婊子!}<|endoftext|> [end of text]

通过llama-cpp-python来跑大模型

llama-cpp-python 是一个 Python 库,它提供了对 llama.cpp 的 Python 绑定。

换句话说,直接通过Python来启动llama.cpp。

首先安装llama-cpp-python:

pip uninstall -y llama-cpp-python
set CMAKE_ARGS=-DLLAMA_CUBLAS=on
set FORCE_CMAKE=1
pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir

如果安装好之后,不支持cuda,需要拷贝cuda动态库文件到Microsoft Visual Studio的所在目录:

Copy files from: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2\extras\visual_studio_integration\MSBuildExtensions
to
(For Enterprise version) C:\Program Files\Microsoft Visual Studio\2022\Enterprise\MSBuild\Microsoft\VC\v170\BuildCustomizations

随后编写代码:

from llama_cpp import Llama
llm = Llama(
model_path="D:\Downloads\causallm_14b-dpo-alpha.Q3_K_M.gguf",
chat_format="llama-2"
)
res = llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "来一段西厢记风格的情感小说,100字,别太露骨了"
}
],stream=True
) for chunk in res:
try:
print(chunk['choices'][0]["delta"]['content'])
except Exception as e:
print(str(e))
pass

程序返回:

AS = 1 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 |
Model metadata: {'general.name': '.', 'general.architecture': 'llama', 'llama.context_length': '8192', 'llama.rope.dimension_count': '128', 'llama.embedding_length': '5120', 'llama.block_count': '40', 'llama.feed_forward_length': '13696', 'llama.attention.head_count': '40', 'tokenizer.ggml.eos_token_id': '151643', 'general.file_type': '12', 'llama.attention.head_count_kv': '40', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.freq_base': '10000.000000', 'tokenizer.ggml.model': 'gpt2', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '151643', 'tokenizer.ggml.padding_token_id': '151643'}
'content'
@ ,
下面
是一

根据
您的
要求

写的

小说
: 王





有名的











经常
出入

大户
人家






这一天

内容不便全部贴出,理解万岁。

结语

最后奉上基于llama-cpp-python和gradio的无审查大模型的webui项目,支持流式输出,提高推理效率:

https://github.com/v3ucn/Causallm14b_llama_webui_adult_version

与众乡亲同飨。

无所不谈,百无禁忌,Win11本地部署无内容审查中文大语言模型CausalLM-14B的更多相关文章

  1. Yapi接口管理平台 本地部署 windows环境 -

    YApi 是高效.易用.功能强大的 api 管理平台,旨在为开发.产品.测试人员提供更优雅的接口管理服务.可以帮助开发者轻松创建.发布.维护 API,YApi 还为用户提供了优秀的交互体验,开发人员只 ...

  2. Kubernetes 学习笔记(二):本地部署一个 kubernetes 集群

    前言 前面用到过的 minikube 只是一个单节点的 k8s 集群,这对于学习而言是不够的.我们需要有一个多节点集群,才能用到各种调度/监控功能.而且单节点只能是一个加引号的"集群&quo ...

  3. 本地部署arcgis by eclipse

    首次来博客园发帖,从本地部署arcgis api开始吧: 首先还是下载arcgis的api包开始,在中国区官网下载arcgis包: 1.http://support.esrichina.com.cn/ ...

  4. ArcGIS server开发之API for js 本地部署

    ArcGIS Server for javascript 本地部署 第一次使用arcgis server for js开发,在经验方面还有很多的不足,所以将自己在开发过程中遇到的问题写出来与大家共享. ...

  5. Exceptionless 本地部署

    免费开源分布式系统日志收集框架 Exceptionless 前两天看到了这篇文章,亲身体会了下,确实不错,按照官方的文档试了试本地部署,折腾一番后终于成功,记下心得在此,不敢独享. 本地部署官方wik ...

  6. ArcGIS JavaScript API本地部署离线开发环境[转]

    原文地址:http://www.cnblogs.com/brawei/archive/2012/12/28/2837660.html 1 获取ArcGIS JavaScript API API的下载地 ...

  7. Exceptionless 本地部署踩坑记录

    仅已此文记录 Exceptionless 本地部署所遇到的问题 1.安装ElasticSearch文本 执行elasticsearch目录中的elasticsearch.bat 没有执行成功. 使用命 ...

  8. jsbin本地部署

    jsbin 本地运行 1.首先安装node.js,下载地址http://nodejs.org/ 安装完成后,使用node.js安装jsbin,如下:进入node环境,执行下面语句: $ npm ins ...

  9. 解决fiddler无法抓取本地部署项目的请求问题

    在本地部署了几个应用,然后想用fiddler抓取一些请求看看调用了哪些接口,然鹅,一直抓不到... 比如访问地址是这样的: 在网上搜罗半天,找到一个解决方法 在localhost或127.0.0.1后 ...

  10. ArcGIS API for JavaScript 4.x 本地部署之Apache(含Apache官方下载方法)

    IIS.Nginx都说了,老牌的Apache和Tomcat也得说一说(如果喜欢用XAMPP另算) 本篇先说Apache. 安装Apache 这个...说实话,比Nginx难找,Apache最近的版本都 ...

随机推荐

  1. [转帖]【JVM】JDK命令行工具

    在JDK/bin目录下我发现了许多命令行工具 这些命令有哪些作用呢,接下来我就来详细介绍一下 常用JDK命令行工具 命令名称 全称 用途 jstat JVM Statistics Monitoring ...

  2. [转帖]oom-killer错误排查过程

    https://www.cnblogs.com/hphua/p/16395893.html 1.遇到的问题:应用在hi3536上跑一段不固定的时间,随之就会出现重启的现象:打印如下: app-run ...

  3. Prompt实战优化

    1.概述 在深度学习领域,Prompt(提示语)被广泛应用于自然语言处理任务中,如文本生成.机器翻译和问答系统等.Prompt的设计对模型的性能和生成结果有着重要的影响,因此在实际应用中合理而有效地利 ...

  4. 微信小程序-常用弹窗

    官方文档:https://developers.weixin.qq.com/miniprogram/dev/api/ui/interaction/wx.showToast.html showToast ...

  5. 2.6 CE修改器:代码注入功能

    从本关开始,各位会初步接触到CE的反汇编功能,这也是CE最强大的功能之一.在第6关的时候我们说到指针的找法,用基址定位动态地址.但这一关不用指针也可以进行修改,即使对方是动态地址,且功能更加强大.代码 ...

  6. C# 中类与继承等概念

    C#是一种现代的.面向对象的编程语言,其中类和继承是面向对象编程语言中非常重要的概念,类和继承是C#中面向对象编程的基本概念,可以用于创建复杂的应用程序和模块,而多态和接口可以使程序更加灵活和可扩展. ...

  7. U390630 分考场题解

    题目链接:U390630 分考场 本题来自于2019年蓝桥杯国赛的题.在洛谷上也被标为了假题.原因是首先官方在需要输出浮点数的情况下,并没有开启spj,并且官方所给的数据当中,总有一两个数据以不知道到 ...

  8. java获取最近12个月月份

    最近在做一个换电站管理的项目,其中有一个大屏折线图.要求计算近12个月的数据.所以,就需要写一个生成近12个月月份的算法.算法如下. 一:编写生成近12个月月份的算法 二:编写判断当天是否是月初的算法 ...

  9. ASP.NET Core分布式项目实战(Identity Server 4回顾,Consent 实现思路介绍)--学习笔记

    任务17:Identity Server 4回顾 上一节我们中间留了一部分,登录之后的 RequireConsent,就是用户授权这一步没有做,直接跳过,这种情况可以理解为我们自己比较信任的客户端,这 ...

  10. select * 的使用说明

    一. SELECT * 的含义 select * 语句是从指定的表中按照顺序返回所有列. 二. SELECT * 的优缺点 1  优点 在实际开发过程中,大家习惯性地使用select *  from  ...