题目


分析

\(K\)那么大肯定是矩阵乘法,

带修改可以用线段树单点修改,

转移矩阵类似于斐波那契数列,

这题思维难度不大,细节很多,需要很长时间QWQ

时间复杂度\(O(mlog_2K)\),具体注释在代码中


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=50011; typedef long long lll;
struct rec{lll x; int y,type;}q[N<<1];
struct maix{int p[2][2];}A[N],B[N],ANS,w[N<<2],W[61];
int mod,a[N],n,m; lll pos;
inline lll iut(){
rr lll ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline maix mul(maix A,maix B,int t=2){
rr maix C;
for (rr int i=0;i<t;++i) for (rr int j=0;j<2;++j)
C.p[i][j]=mo(1ll*A.p[i][0]*B.p[0][j]%mod,1ll*A.p[i][1]*B.p[1][j]%mod);
return C;
}
inline void build(int k,int l,int r){
if (l==r){
w[k]=A[l];
return;
}
rr int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
w[k]=mul(w[k<<1],w[k<<1|1]);
}
inline void update(int k,int l,int r,int x){
if (l==r){
w[k]=B[x];
return;
}
rr int mid=(l+r)>>1;
if (x<=mid) update(k<<1,l,mid,x);
else update(k<<1|1,mid+1,r,x);
w[k]=mul(w[k<<1],w[k<<1|1]);
}
bool cmp(rec x,rec y){return x.x<y.x;}
inline maix doit(lll x){
rr maix ANS;
ANS.p[0][0]=1,ANS.p[1][0]=0,
ANS.p[0][1]=0,ANS.p[1][1]=1;
for (rr int i=0;i<60;++i)
if ((x>>i)&1) ANS=mul(ANS,W[i]);
return ANS;
}
signed main(){
pos=iut(),mod=iut(),n=iut(),ANS.p[0][1]=1;
for (rr int i=0;i<n;++i) a[i]=iut()%mod;
for (rr int i=1;i<=n;++i) A[i].p[1][1]=a[i%n],A[i].p[0][1]=a[i-1],A[i].p[1][0]=1,B[i]=A[i];
m=iut();
for (rr int i=1;i<=m;++i) q[i+m].x=(q[i].x=iut())+1,q[i+m].y=q[i].y=iut()%mod,q[i].type=1;//一个特例影响两个矩阵
build(1,1,n),sort(q+1,q+1+m*2,cmp),W[0]=w[1];
for (m<<=1;m&&q[m].x>pos;--m); rr lll now,NOW=0;
for (rr int i=1;i<60;++i) W[i]=mul(W[i-1],W[i-1]);
for (rr int l=1,r;l<=m;l=r+1){
for (now=(q[r=l].x-1)/n;r<m&&now==(q[r+1].x-1)/n;++r);//同一个周期
ANS=mul(ANS,doit(now-NOW),1),NOW=now;//中间段快速幂跳过
for (rr int i=l;i<=r;++i){
rr int POS=(q[i].x-1)%n+1;
B[POS].p[q[i].type][1]=q[i].y;
update(1,1,n,POS);
}
if (now==pos/n) break; ANS=mul(ANS,w[1],1),++NOW;
for (rr int i=l;i<=r;++i){
rr int POS=(q[i].x-1)%n+1;
B[POS]=A[POS],update(1,1,n,POS);//恢复原样
}
}
now=pos/n,ANS=mul(ANS,doit(now-NOW),1);
for (rr int i=1;i<=pos%n;++i) ANS=mul(ANS,B[i],1);//散的矩阵单独乘
return !printf("%d",ANS.p[0][0]);//输出前一个(一开始[0,1]代表的是第0个矩阵)
}

#矩阵乘法,线段树#CF575A Fibonotci的更多相关文章

  1. THUSCH 2017 大魔法师(矩阵乘法+线段树)

    题意 https://loj.ac/problem/2980 思路 区间修改考虑用线段树维护.由于一段区间的 \(A,B,C\) 可以表示成由原来的 \(A,B,C\) 乘上带上系数再加上某一个某个常 ...

  2. Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)

    题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...

  3. ZOJ 2671 Cryptography 矩阵乘法+线段树

    B - Cryptography Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Subm ...

  4. HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)

    题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...

  5. HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模

    Multiply game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  6. codeforces750E New Year and Old Subsequence 矩阵dp + 线段树

    题目传送门 思路: 先看一个大牛的题解 题解里面对矩阵的构造已经写的很清楚了,其实就是因为在每个字符串都有固定的很多中状态,刚好可以用矩阵来表达,所以$(i,j)$这种状态可以通过两个相邻的矩阵的$m ...

  7. HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解

    题意:01串,操作1:把l r区间的0变1,1变0:操作2:求出l r区间的子序列种数 思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] ...

  8. 2019杭电多校6 hdu6638 Snowy Smile(二维最大矩阵和 线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=6638 题意:给你一些点的权值,让找一个矩形圈住一部分点,问圈住点的最大权值和 分析:由于是稀疏图,明显要先把x, ...

  9. E. Sasha and Array 矩阵快速幂 + 线段树

    E. Sasha and Array 这个题目没有特别难,需要自己仔细想想,一开始我想了一个方法,不对,而且还很复杂,然后lj提示了我一下说矩阵乘,然后再仔细想想就知道怎么写了. 这个就是直接把矩阵放 ...

  10. 【vijos】1750 建房子(线段树套线段树+前缀和)

    https://vijos.org/p/1750 是不是我想复杂了.... 自己yy了个二维线段树,然后愉快的敲打. 但是wa了两法.......sad 原因是在处理第二维的更新出现了个小问题,sad ...

随机推荐

  1. golang微服务实践:服务注册与服务发现 - Etcd的使用

    为什么? 为什么会有服务注册和服务发现?在它以前我们是怎么做的? 举个例子: 比如我们做MySQL读写分离,就在本地配置一个文件,然后程序读取这个配置文件里的数据进行数据库读写分离的设置. 但是随着业 ...

  2. Django关于StreamingHttpResponse与FileResponse响应文件或视频的下载请求

    StreamingHttpResponse from django.http import StreamingHttpResponse StreamingHttpResponse(streaming_ ...

  3. AI开发之路

    常见报错解决 Dilb库安装的三种方法 yolov5项目cuda错误解决 环境准备 Anaconda-用conda创建python虚拟环境 Python-pip创建虚拟环境 jupyter noteb ...

  4. Spring Cloud Zuul 获取当前请求的路由信息和路由后端的服务节点信息

    基本思路 参考spring-cloud-zuul-ratelimit开源项目,在过滤器中根据当前的请求路径,判断当前的路由信息,当取得路由信息后,可以对服务的调用次数做统计等操作. 具体实现 创建一个 ...

  5. Docker的使用记录

    开始 这是第一个尝试在Leanote上面编写文章,我觉得最重要的事情就是能够保证md文件是能够移植的,否则如果这个软件不靠谱的话,我还能把文章移动到别的地方去.所以先写一篇文章看看效果如何,方便不方便 ...

  6. Java 类的内部成员之五:内部类

    1 package com.bytezreo.innerclass; 2 3 /** 4 * 5 * @Description 类的内部成员之五:内部类 6 * @author Bytezero·zh ...

  7. 【学习笔记】 - 基础数据结构 :Link-Cut Tree(进阶篇)

    前言 LCT没题写可以去写树剖和一些线段树合并的题练手 LCT 的概念 原本的树剖是对树进行剖分,剖分为重边和轻边 LCT则是对于树分为虚边和实边,特殊的,LCT可以没有虚边(例:银河英雄传说v2) ...

  8. 【思维题、KMP】P3526 [POI2011]OKR-Periodicity 题解

    P3526 [POI2011]OKR-Periodicity 题解 前言 一道非常厉害的思维题.看题解得到了一些提示搞出来了. 作为 2011 年的题还是很厉害的. 约定 定义 \(s[l,r]\) ...

  9. MySQL8.0与5.7版本的下载、安装与配置

    •软件下载 下载地址 [官网],点开该网址,点击  DOWNLOAD 来到如下页面: MySQL的版本介绍 MySQL Community Server  社区版本:开源免费,自由下载,但不提供官方技 ...

  10. 获取input[type="checkbox"]:checked 所在tr中特定元素

    1.要求如下  2.html源码 <div class="btn"> <button type="button" onclick=" ...