作者:vivo 互联网大数据团队 - Xu Yu

在增效降本的大背景下,vivo大数据基础团队引入Hudi组件为公司业务部门湖仓加速的场景进行赋能。主要应用在流批同源、实时链路优化及宽表拼接等业务场景。

Hudi 基础能力及相关概念介绍

流批同源能力

与Hive不同,Hudi数据在Spark/Flink写入后,下游可以继续使用Spark/Flink引擎以流读的形式实时读取数据。同一份Hudi数据源既可以批读也支持流读。

Flink、Hive、Spark的流转批架构:

Hudi流批同源架构:

COW和MOR的概念

Hudi支持COW(Copy On Write)和MOR(Merge On Read)两种类型:

(1)COW写时拷贝

每次更新的数据都会拷贝一份新的数据版本出来,用户通过最新或者指定version的可以进行数据查询。缺点是写入的时候往往会有写内存放大的情况,优点是查询不需要合并,直接读取效率相对比较高。JDK中的CopyOnWriteArrayList/

CopyOnWriteArraySet 容器正是采用了 COW 思想。

COW表的数据组织格式如下:

(2)MOR读时合并

每次更新或者插入新的数据时,并写入parquet文件,而是写入Avro格式的log文件中,数据按照FileGroup进行分组,每个FileGroup由base文件(parquet文件)和若干log文件组成,每个FileGroup有单独的FileGroupID;在读取的时候会在内存中将base文件和log文件进行合并,进而返回查询的数据。缺点是合并需要花费额外的合并时间,查询的效率受到影响;优点是写入的时候效率相较于COW快很多,一般用于要求数据快速写入的场景。

MOR数据组织格式如下:

Hudi的小文件治理方案

Hudi表会针对COW和MOR表制定不同的文件合并方案,分别对应Clustering和Compaction。

Clustering顾名思义,就是将COW表中多个FileGroup下的parquet根据指定的数据大小重新编排合并为新的且文件体积更大的文件块。如下图所示:

Compaction即base parquet文件与相同FileGroup下的其余log文件进行合并,生成最新版本的base文件。如下图所示:

周边引擎查询Hudi的原理

当前主流的OLAP引擎等都是从HMS中获取Hudi的分区元数据信息,从InputFormat属性中判断需要启动HiveCatalog还是HudiCatalog,然后生成查询计划最终执行。当前StarRocks、Presto等引擎都支持以外表的形式对Hudi表进行查询。

Procedure介绍

Hudi 支持多种Procedure,即过程处理程序,用户可以通过这些Procedure方便快速的处理Hudi表的相关逻辑,比如Compaction、Clustering、Clean等相关处理逻辑,不需要进行编码,直接通过sparksql的语句来执行。

项目架构

1. 按时效性要求进行分类

秒级延迟

分钟级延迟

当前Hudi主要还是应用在准实时场景

上游从Kafka以append模式接入ods的cow表,下游部分dw层业务根据流量大小选择不同类型的索引表,比如bucket index的mor表,在数据去重后进行dw构建,从而提供统一数据服务层给下游的实时和离线的业务,同时ods层和dw层统一以insert overwrite的方式进行分区级别的容灾保障,Timeline上写入一个replacecommit的instant,不会引发下游流量骤增,如下图所示:

线上达成能力

实时场景

支持1亿条/min量级准实时写入;流读延迟稳定在分钟级

离线场景

支持千亿级别数据单批次离线写入;查询性能与查询Hive持平(部分线上任务较查询Hive提高20%以上)

小文件治理

95%以上的合并任务单次执行控制在10min内完成

组件能力优化

组件版本

当前线上所有Hudi的版本已从0.12 升级到 0.14,主要考虑到0.14版本的组件能力更加完备,且与社区前沿动态保持一致。

流计算场景

1. 限流

数据积压严重的情况下,默认情况会消费所有未消费的commits,往往因消费的commits数目过大,导致任务频繁OOM,影响任务稳定性;优化后每次用户可以摄取指定数目的commits,很大程度上避免任务OOM,提高了任务稳定性。

2. 外置clean算子

避免单并行度的clean算子最终阶段影响数据实时写入的性能;将clean单独剥离到

compaction/clustering执行。这样的好处是单个clean算子,不会因为其生成clean计划和执行导致局部某些Taskmanager出现热点的问题,极大程度提升了实时任务稳定性。

3. JM内存优化

部分大流量场景中,尽管已经对Hudi进行了最大程度的调优,但是JM的内存仍然在较高水位波动,还是会间隔性出现内存溢出影响稳定性。这种情况下我们尝试对 state.backend.fs.memory-threshold 参数进行调整;从默认的20KB调整到1KB,JM内存显著下降;同时运行至今state相关数据未产生小文件影响。

批计算场景

1. Bucket index下的BulkInsert优化

0.14版本后支持了bucket表的bulkinsert,实际使用过程中发现分区数很大的情况下,写入延迟耗时与计算资源消耗较高;分析后主要是打开的句柄数较多,不断CPU IO 频繁切换影响写入性能。

因此在hudi内核进行了优化,主要是基于partition path和bucket id组合进行预排序,并提前关闭空闲写入句柄,进而优化cpu资源使用率。

这样原先50分钟的任务能降低到30分钟以内,数据写入性能提高约30% ~ 40%。

优化前:

优化后:

2. 查询优化

0.14版本中,部分情况下分区裁剪会失效,从而导致条件查询往往会扫描不相关的分区,在分区数庞大的情况下,会导致driver OOM,对此问题进行了修复,提高了查询任务的速度和稳定性。

eg:select * from hudi_test.tmp_hudi_test where day='2023-11-20' and hour=23;

(其中tmp_hudi_test是一张按日期和小时二级分区的表)

修复前:

修复后:

优化后不仅包括减少分区的扫描数目,也减少了一些无效文件RPC的stage。

3. 多种OLAP引擎支持

此外,为了提高MOR表管理的效率,我们禁止了RO/RT表的生成;同时修复了原表的元数据不能正常同步到HMS的缺陷(这种情况下,OLAP引擎例如Presto、StarRocks查询原表数据默认仅支持对RO/RT表的查询,原表查询为空结果)。

小文件合并

1. 序列化问题修复

0.14版本Hudi在文件合并场景中,Compaction的性能相较0.12版本有30%左右的资源优化,比如:原先0.12需要6G资源才能正常启动单个executor的场景下,0.14版本 4G就可以启动并稳定执行任务;但是clustering存在因TypedProperties重复序列化导致的性能缺陷。完善后,clustering的性能得到30%以上的提升。

可以从executor的修复前后的火焰图进行比对。

修复前:

修复后:

2. 分批compaction/clustering

compaction/clustering默认不支持按commits数分批次执行,为了更好的兼容平台调度能力,对compaction/clustering相关procedure进行了改进,支持按批次执行。

同时对其他部分procedure也进行了优化,比如copy_to_table支持了列裁剪拷贝、

delete_procedures支持了批量执行等,降低sparksql的执行时间。

3. clean优化

Hudi0.14 在多分区表的场景下clean的时候很容易OOM,主要是因为构建

HoodieTableFileSystemView的时候需要频繁访问TimelineServer,因产生大量分区信息请求对象导致内存溢出。具体情况如下:

对此我们对partition request Job做了相关优化,将多个task分为多个batch来执行,降低对TimelineSever的内存压力,同时增加了请求前的缓存判断,如果已经缓存的将不会发起请求。

改造后如下:

此外实际情况下还可以在FileSystemViewManager构建过程中将 remoteview 和 secondview 的顺序互调,绝大部分场景下也能避免clean oom的问题,直接优先从secondview中获取分区信息即可。

生命周期管理

当前计算平台支持用户表级别生命周期设置,为了提高删除的效率,我们设计实现了直接从目录对数据进行删除的方案,这样的收益有:

  1. 降低了元数据交互时间,执行时间快;
  2. 无须加锁、无须停止任务;
  3. 不会影响后续compaction/clustering 相关任务执行(比如执行合并的时候不会报文件不存在等异常)。

删除前会对compaction/clustering等instants的元数据信息进行扫描,经过合法性判断后区分用户需要删除的目录是否存在其中,如果有就保存;否则直接删除。流程如下:

总结

我们分别在流批场景、小文件治理、生命周期管理等方向做了相关优化,上线后的收益主要体现这四个方向:

  1. 部分实时链路可以进行合并,降低了计算和存储资源成本;
  2. 基于watermark有效识别分区写入的完成度,接入湖仓的后续离线任务平均SLA提前时间不低于60分钟;
  3. 部分流转批后的任务上线后执行时间减少约40%(比如原先执行需要150秒的任务可以缩短到100秒左右完成 ;
  4. 离线增量更新场景,部分任务相较于原先Hive任务可以下降30%以上的计算资源。

同时跟进用户实际使用情况,发现了一些有待优化的问题:

  1. Hudi生成文件的体积相较于原先Hive,体积偏大(平均有1.3 ~ 1.4的比例);
  2. 流读的指标不够准确;
  3. Hive -> Hudi迁移需要有一定的学习成本;

针对上述问题,我们也做了如下后续计划:

  1. 对hoodie parquet索引文件进行精简优化,此外业务上对主键的重新设计也会直接影响到文件体积大小;
  2. 部分流读的指标不准,我们已经完成初步的指标修复,后续需要补充更多实时的任务指标来提高用户体验;
  3. 完善Hudi迁移流程,提供更快更简洁的迁移工具,此外也会向更多的业务推广Hudi组件,进一步挖掘Hudi组件的潜在使用价值。

Apache Hudi 在 vivo 湖仓一体的落地实践的更多相关文章

  1. 华为云FusionInsight湖仓一体解决方案的前世今生

    摘要:华为云发布新一代智能数据湖华为云FusionInsight时再次提到了湖仓一体理念,那我们就来看看湖仓一体的来世今生. 伴随5G.大数据.AI.IoT的飞速发展,数据呈现大规模.多样性的极速增长 ...

  2. 基于Apache Hudi构建数据湖的典型应用场景介绍

    1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能 ...

  3. 李呈祥:bilibili在湖仓一体查询加速上的实践与探索

    导读: 本文主要介绍哔哩哔哩在数据湖与数据仓库一体架构下,探索查询加速以及索引增强的一些实践.主要内容包括: 什么是湖仓一体架构 哔哩哔哩目前的湖仓一体架构 湖仓一体架构下,数据的排序组织优化 湖仓一 ...

  4. KLOOK客路旅行基于Apache Hudi的数据湖实践

    1. 业务背景介绍 客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票.一日游.特色体验.当地交通与美食预订服务.覆盖全球100个国家及地区,支持12种语言和41种货 ...

  5. 划重点!AWS的湖仓一体使用哪种数据湖格式进行衔接?

    此前Apache Hudi社区一直有小伙伴询问能否使用Amazon Redshift查询Hudi表,现在它终于来了. 现在您可以使用Amazon Redshift查询Amazon S3 数据湖中Apa ...

  6. 分支路径图调度框架在 vivo 效果广告业务的落地实践

    作者:vivo 互联网AI团队- Liu Zuocheng.Zhou Baojian 本文根据周保建老师在"2022 vivo开发者大会"现场演讲内容整理而成.公众号回复[2022 ...

  7. Apache Hudi在华米科技的应用-湖仓一体化改造

    徐昱 Apache Hudi Contributor:华米高级大数据开发工程师 巨东东 华米大数据开发工程师 1. 应用背景及痛点介绍 华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技 ...

  8. 基于 Apache Hudi 极致查询优化的探索实践

    摘要:本文主要介绍 Presto 如何更好的利用 Hudi 的数据布局.索引信息来加速点查性能. 本文分享自华为云社区<华为云基于 Apache Hudi 极致查询优化的探索实践!>,作者 ...

  9. 华为云 MRS 基于 Apache Hudi 极致查询优化的探索实践

    背景 湖仓一体(LakeHouse)是一种新的开放式架构,它结合了数据湖和数据仓库的最佳元素,是当下大数据领域的重要发展方向. 华为云早在2020年就开始着手相关技术的预研,并落地在华为云 Fusio ...

  10. Halodoc使用 Apache Hudi 构建 Lakehouse的关键经验

    Halodoc 数据工程已经从传统的数据平台 1.0 发展到使用 LakeHouse 架构的现代数据平台 2.0 的改造.在我们之前的博客中,我们提到了我们如何在 Halodoc 实施 Lakehou ...

随机推荐

  1. 【JS 逆向百例】猿人学系列 web 比赛第二题:js 混淆 - 动态 cookie,详细剖析

    逆向目标 猿人学 - 反混淆刷题平台 Web 第二题:js 混淆,动态 cookie 目标:提取全部 5 页发布日热度的值,计算所有值的加和 主页:https://match.yuanrenxue.c ...

  2. 【主流技术】15 分钟掌握 Redis 的安装部署和基本特性

    目录 前言 一.Redis 概述 1.1Redis 是什么? 1.2Redis 能做什么? 1.3基础知识 二.Redis 安装与基本命令 2.1Windows 安装 方式一 方式二 2.2Linux ...

  3. 总结一个问题:csdn发布文章页面为空或者创作内容管理为空

    总结一个问题:csdn发布文章页面或者创作内容管理为空 解决方案: 打开chrome浏览器的设置: 点击清除数据: 选择高级里清除数据,一般24小时就可以了,不行就7天

  4. 设计模式-1 单例模式 SingletonPattern

    23种设计模式 一.创建型 1,AbstractFactory(抽象工厂,对象模式) 2,Builder(建造者,对象模式) 3,Factory Method(工厂方法,类创模式) 4,Prototy ...

  5. SpringAOP配置要点

    一.基于配置文件 1.关于aop配置文件相关 <!--配置aop--> <aop:config> <!--配置切入点表达式--> <aop:pointcut ...

  6. 多进程|基于非阻塞调用的轮询检测方案|进程等待|重新理解挂起|Linux OS

    说在前面 今天给大家带来操作系统中进程等待的概念,我们学习的操作系统是Linux操作系统. 我们今天主要的目标就是认识wait和waitpid这两个系统调用. 前言 那么这里博主先安利一下一些干货满满 ...

  7. Linux RDP 会话中无法打开VSCode 解决办法

    github issue: VS Code "and still" won't open in a Linux xrdp session Workaround- Linux RDP ...

  8. 《Learning from Context or Names?An Empirical Study on Neural Relation Extraction》论文阅读笔记

    代码 原文地址 预备知识: 1.什么是对比学习? 对比学习是一种机器学习范例,将未标记的数据点相互并列,以教导模型哪些点相似,哪些点不同. 也就是说,顾名思义,样本相互对比,属于同一分布的样本在嵌入空 ...

  9. UVA12467 Secret Word 题解

    题目传送门 前置知识 前缀函数与 KMP 算法 解法 考虑将 \(S\) 翻转后得到 \(S'\),然后就转化为求 \(S'\) 的一个最长子串使得其是 \(S\) 的前缀.使用 KMP 求解即可. ...

  10. 玩转 CMS

    玩转 CMS 目前接手的内容管理系统(CMS)基于 ant-design-vue-pro(简称模板项目或ant-vue-pro) 开发的,经过许多次迭代,形成了现在的模样(简称本地项目). 假如让一名 ...