范德蒙德矩阵的行列式

\[\begin{vmatrix}
1 & 1 & 1 & \dots & 1 \\
x_1 & x_2 & x_3 & \dots & x_n \\
x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \\
\end{vmatrix}
=\prod\limits_{i>j}(x_i-x_j)
\]

Proof:

\[\begin{aligned}
&
\begin{vmatrix}
1 & 1 & 1 & \dots & 1 \\
x_1 & x_2 & x_3 & \dots & x_n \\
x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{n-2} & x_2^{n-2} & x_3^{n-2} & \dots & x_n^{n-2} \\
x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \\
\end{vmatrix}
\\ \\
=&
\begin{vmatrix}
1 & 1 & 1 & \dots & 1 \\
x_1 & x_2 & x_3 & \dots & x_n \\
x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{n-2} & x_2^{n-2} & x_3^{n-2} & \dots & x_n^{n-2} \\
x_1^{n-1}-x_1x_1^{n-2} & x_2^{n-1}-x_1x_2^{n-2} & x_3^{n-1}-x_1x_3^{n-2} & \dots & x_n^{n-1}-x_1x_n^{n-2} \\
\end{vmatrix}
\texttt{(用第 n-1 行乘 x1 去减第 n 行)}
\\ \\
=&
\begin{vmatrix}
1 & 1 & 1 & \dots & 1 \\
x_1 & x_2 & x_3 & \dots & x_n \\
x_1^2 & x_2^2 & x_3^2 & \dots & x_n^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{n-2}-x_1x_1^{n-3} & x_2^{n-2}-x_1x_2^{n-3} & x_3^{n-2}-x_1x_3^{n-3} & \dots & x_n^{n-2}-x_1x_n^{n-3} \\
x_1^{n-1}-x_1x_1^{n-2} & x_2^{n-1}-x_1x_2^{n-2} & x_3^{n-1}-x_1x_3^{n-2} & \dots & x_n^{n-1}-x_1x_n^{n-2} \\
\end{vmatrix}
\texttt{(用第 n-2 行乘 x1 去减第 n-1 行)}
\\ \\
=&\dots\\
=&
\begin{vmatrix}
1 & 1 & 1 & \dots & 1 \\
x_1-x_1 & x_2-x_1 & x_3-x_1 & \dots & x_n-x_1 \\
x_1^2-x_1x_1 & x_2^2-x_1x_2 & x_3^2-x_1x_3 & \dots & x_n^2-x_1x_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_1^{n-2}-x_1x_1^{n-3} & x_2^{n-2}-x_1x_2^{n-3} & x_3^{n-2}-x_1x_3^{n-3} & \dots & x_n^{n-2}-x_1x_n^{n-3} \\
x_1^{n-1}-x_1x_1^{n-2} & x_2^{n-1}-x_1x_2^{n-2} & x_3^{n-1}-x_1x_3^{n-2} & \dots & x_n^{n-1}-x_1x_n^{n-2} \\
\end{vmatrix}
\texttt{(以此类推)}
\\ \\
=&
\begin{vmatrix}
1 & 1 & 1 & \dots & 1 \\
0 & x_2-x_1 & x_3-x_1 & \dots & x_n-x_1 \\
0 & x_2^2-x_1x_2 & x_3^2-x_1x_3 & \dots & x_n^2-x_1x_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & x_2^{n-2}-x_1x_2^{n-3} & x_3^{n-2}-x_1x_3^{n-3} & \dots & x_n^{n-2}-x_1x_n^{n-3} \\
0 & x_2^{n-1}-x_1x_2^{n-2} & x_3^{n-1}-x_1x_3^{n-2} & \dots & x_n^{n-1}-x_1x_n^{n-2} \\
\end{vmatrix}
\\ \\
=&
\begin{vmatrix}
x_2-x_1 & x_3-x_1 & \dots & x_n-x_1 \\
x_2^2-x_1x_2 & x_3^2-x_1x_3 & \dots & x_n^2-x_1x_n \\
\vdots & \vdots & \ddots & \vdots \\
x_2^{n-2}-x_1x_2^{n-3} & x_3^{n-2}-x_1x_3^{n-3} & \dots & x_n^{n-2}-x_1x_n^{n-3} \\
x_2^{n-1}-x_1x_2^{n-2} & x_3^{n-1}-x_1x_3^{n-2} & \dots & x_n^{n-1}-x_1x_n^{n-2} \\
\end{vmatrix}
\\ \\
=&
(x_2-x_1)(x_3-x_1)\dots(x_n-x_1)
\begin{vmatrix}
1 & 1 & \dots & 1 \\
x_2 & x_3 & \dots & x_n \\
x_2^2 & x_3^2 & \dots & x_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
x_2^{n-2} & x_3^{n-2} & \dots & x_n^{n-2} \\
x_2^{n-1} & x_3^{n-1} & \dots & x_n^{n-1} \\
\end{vmatrix}
\texttt{(提出每列的公因式)}
\\ \\
=&\dots\\ \\
=&\prod\limits_{i>j}(x_i-x_j)
\end{aligned}
\]

循环矩阵的行列式

\[A=
\begin{pmatrix}
a_1 & a_2 & a_3 & \dots & a_n \\
a_n & a_1 & a_2 & \dots & a_{n-1} \\
a_{n-1} & a_n & a_1 & \dots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_2 & a_3 & a_4 & \dots & a_1 \\
\end{pmatrix}
\\
\texttt{ Let }f(x)=a_1+a_2x+a_3x^2+\dots+a_nx^{n-1}
\\
\texttt{Then } |A|=f(\epsilon_1)f(\epsilon_2)\dots f(\epsilon_n)
\\
\texttt{其中 }\epsilon_i \texttt{ 是 1 的 n 个互不相同的 n 次单位根}
\]

Proof:

\[\texttt{Let } V=
\begin{pmatrix}
1 & 1 & 1 & \dots & 1 \\
\epsilon_1 & \epsilon_2 & \epsilon_3 & \dots & \epsilon_n \\
\epsilon_1^2 & \epsilon_2^2 & \epsilon_3^2 & \dots & \epsilon_n^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\epsilon_1^{n-1} & \epsilon_2^{n-1} & \epsilon_3^{n-1} & \dots & \epsilon_n^{n-1} \\
\end{pmatrix}
\\
\texttt{Then } AV=
\begin{pmatrix}
f(\epsilon_1) & f(\epsilon_2) & f(\epsilon_3) & \dots & f(\epsilon_n) \\
\epsilon_1f(\epsilon_1) & \epsilon_2f(\epsilon_2) & \epsilon_3f(\epsilon_3) & \dots & \epsilon_nf(\epsilon_n) \\
\epsilon_1^2f(\epsilon_1) & \epsilon_2^2f(\epsilon_2) & \epsilon_3^2f(\epsilon_3) & \dots & \epsilon_n^2f(\epsilon_n) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\epsilon_1^{n-1}f(\epsilon_1) & \epsilon_2^{n-1}f(\epsilon_2) & \epsilon_3^{n-1}f(\epsilon_3) & \dots & \epsilon_n^{n-1}f(\epsilon_n) \\
\end{pmatrix}
\\
\therefore |AV|=f(\epsilon_1)f(\epsilon_2)\dots f(\epsilon_n)|V|\\
|A|=f(\epsilon_1)f(\epsilon_2)\dots f(\epsilon_n)
\]

范德蒙德矩阵行列式 & 循环矩阵行列式的证明的更多相关文章

  1. 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理

    浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...

  2. bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]

    4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...

  3. Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]

    题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...

  4. 【题解】幼儿园篮球题(范德蒙德卷积+斯特林+NTT)

    [题解]幼儿园篮球题(NTT+范德蒙德卷积+斯特林数) 题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊) \[ \sum_{i=1}^{S}\dfrac 1 {N \choose n_i ...

  5. UVA 1386 - Cellular Automaton(循环矩阵)

    UVA 1386 - Cellular Automaton option=com_onlinejudge&Itemid=8&page=show_problem&category ...

  6. BZOJ 4204 && BZOJ 2510 循环矩阵

    n^3logn非常显然.所以要用一种因为这个矩阵是一个循环矩阵,所以只要知道第一行就可以知道所有行了. C[i][j]=C[i-1][j-1]; #include <iostream> # ...

  7. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  8. LA 3704 (矩阵快速幂 循环矩阵) Cellular Automaton

    将这n个格子看做一个向量,每次操作都是一次线性组合,即vn+1 = Avn,所求答案为Akv0 A是一个n*n的矩阵,比如当n=5,d=1的时候: 不难发现,A是个循环矩阵,也就是将某一行所有元素统一 ...

  9. bzoj 2510: 弱题 循环矩阵

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 61[Submit][Status][Discuss] De ...

  10. hihocoder 1388 fft循环矩阵

    #1388 : Periodic Signal 时间限制:5000ms 单点时限:5000ms 内存限制:256MB 描述 Profess X is an expert in signal proce ...

随机推荐

  1. 3个轻量级物联网新品实验,带您深度体验IoT开发

    摘要:一键创建实验环境,开发者通过实验手册指导,快速体验华为云IoT服务,在云端即可实现云服务的实践.调测和验证等开发流程. 本文分享自华为云社区<物联网云上实验上新,带您深度体验华为云IoT服 ...

  2. 云小课|三大灵魂拷问GaussDB(DWS)数据落盘安全问题

    阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说).深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云.更多精彩内容请单击此处. 摘要:GaussDB(D ...

  3. vue2升级vue3: TSX Vue 3 Composition API Refs

    在vue2时代,$refs 直接操作子组件 this.$refs.gridlayout.$children[index]; 虽然不推荐这么做,但是确实非常好用.但是vue2快速迁移到vue3,之前的这 ...

  4. 再谈BOM和DOM(3):DOM节点操作-元素样式修改及DOM内容增删改查

    操作节点,先得选择节点,就得知道节点选择器与DOM节点查找 DOM节点选择器 W3C提供了比较方便的定位节点的方法和属性 getElementById() 一个参数:元素标签的ID getElemen ...

  5. ​五大不良 coding 习惯,你占了几样?

    在之前的文章中,我们一起解读了2021年数据成本报告.根据 IBM 和 Ponemon Institute 2021年的报告,全球平均数据泄露成本约为424万美元.为了降低数据泄露造成的成本,企业可以 ...

  6. 你好 Java!Solon v1.10.3 发布

    相对于 Spring Boot 和 Spring Cloud 的项目: 启动快 5 - 10 倍. (更快) qps 高 2- 3 倍. (更高) 运行时内存节省 1/3 ~ 1/2. (更少) 打包 ...

  7. 阿里云CentOS数据盘挂载(磁盘扩容)

    1. df -h Disk label type 值为dos表示MBR分区,值为gpt表示GPT分区. [root@iZuf66gcq71y5hlfv02w6aZ ~]# yum install -y ...

  8. RabbitMQ--工作模式

    单一模式 即单机不做集群 普通模式 即默认模式,对于消息队列载体,消息实体只存在某个节点中,每个节点仅有 相同的元数据,即队列的结构 当消息进入A节点的消息队列载体后,消费 者从B节点消费时,rabb ...

  9. 微信小程序 wx:for 遍历 Map集合

    如果要在微信小程序wxml中对ES6的Map集合进行wx:for遍历,如下: let map = new Map(); map.set("a",[1,2,3]); map.set( ...

  10. 0x61 图论-最短路

    B题 Telephone Lines https://ac.nowcoder.com/acm/contest/1055/B 中文题面:https://www.luogu.com.cn/problem/ ...