Hadoop源码篇---解读Mapprer源码Input输入
一。前述
上次分析了客户端源码,这次分析mapper源码让大家对hadoop框架有更清晰的认识
二。代码
自定义代码如下:
public class MyMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
继承Mapper源码如下:
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { /**
* The <code>Context</code> passed on to the {@link Mapper} implementations.
*/
public abstract class Context
implements MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
} /**
* Called once at the beginning of the task.
*/
protected void setup(Context context
) throws IOException, InterruptedException {
// NOTHING
} /**
* Called once for each key/value pair in the input split. Most applications
* should override this, but the default is the identity function.
*/
@SuppressWarnings("unchecked")
protected void map(KEYIN key, VALUEIN value,
Context context) throws IOException, InterruptedException {
context.write((KEYOUT) key, (VALUEOUT) value);
} /**
* Called once at the end of the task.
*/
protected void cleanup(Context context
) throws IOException, InterruptedException {
// NOTHING
} /**
* Expert users can override this method for more complete control over the
* execution of the Mapper.
* @param context
* @throws IOException
*/
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
}
解析:我们重新了map方法,所以传进run方法中才能不断执行。
MapperTask源码解析:
Container封装了一个脚本命令,通过远程调用启动Yarnchild,如果是MapTask任务,然后把反射城MapTask的对象,启动mapTask的run方法
Maptask中的run方法:
public void run(final JobConf job, final TaskUmbilicalProtocol umbilical)
throws IOException, ClassNotFoundException, InterruptedException {
this.umbilical = umbilical; if (isMapTask()) {
// If there are no reducers then there won't be any sort. Hence the map
// phase will govern the entire attempt's progress.
if (conf.getNumReduceTasks() == 0) {//假如没有reduce阶段
mapPhase = getProgress().addPhase("map", 1.0f);
} else {
// If there are reducers then the entire attempt's progress will be
// split between the map phase (67%) and the sort phase (33%).
mapPhase = getProgress().addPhase("map", 0.667f);
sortPhase = getProgress().addPhase("sort", 0.333f);//假如有reduce阶段需要排序,说明没有reduce任务则不需要排序
}
}
if (useNewApi) {
runNewMapper(job, splitMetaInfo, umbilical, reporter);//用新api
} else {
runOldMapper(job, splitMetaInfo, umbilical, reporter);
}
done(umbilical, reporter);
}
runNewMapper解析:
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,
final TaskSplitIndex splitIndex,
final TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException, ClassNotFoundException,
InterruptedException {
// make a task context so we can get the classes
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, //我们自定义的job
getTaskID(),
reporter);//创建上下文
// make a mapper
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
(org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
ReflectionUtils.newInstance(taskContext.getMapperClass(), job);//反射把自定的Mapper类反射出来 对应解析1
// make the input format
org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
(org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);//反射把自定的InputFormat类反射出来 对应解析2
// rebuild the input split
org.apache.hadoop.mapreduce.InputSplit split = null;
split = getSplitDetails(new Path(splitIndex.getSplitLocation()),//每一个切片条目对应的是一个MapTask 每个切片中对应的4个东西(文件归属,偏移量,长度,位置信息)
splitIndex.getStartOffset());
LOG.info("Processing split: " + split); org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
new NewTrackingRecordReader<INKEY,INVALUE>//对应解析3
(split, inputFormat, reporter, taskContext);//上面准备的输入格式化和切片为输入准备,拿到流,怎么读按文本方式读,行级
job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
org.apache.hadoop.mapreduce.RecordWriter output = null;
// get an output object
if (job.getNumReduceTasks() == 0) {
output =
new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
} else {
output = new NewOutputCollector(taskContext, job, umbilical, reporter);
} org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE>
mapContext =
new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(), //对应解析4
input, output, //mapContext即上下文对象封装了输入输出,所以可通过上下文拿到值 则可以得出Mapper类中的content的getCurrentyKey实际上是取得输入对象的LineRecorder
committer,
reporter, split); org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context
mapperContext =
new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
mapContext);
try {
input.initialize(split, mapperContext);//输入 对应解析5
mapper.run(mapperContext);//run 对应解析6
mapPhase.complete();
setPhase(TaskStatus.Phase.SORT);
statusUpdate(umbilical);
input.close();
input = null;
output.close(mapperContext);//输出
output = null;
} finally {
closeQuietly(input);
closeQuietly(output, mapperContext);
}
}
解析1源码
@SuppressWarnings("unchecked")
public Class<? extends Mapper<?,?,?,?>> getMapperClass()
throws ClassNotFoundException {
return (Class<? extends Mapper<?,?,?,?>>)
conf.getClass(MAP_CLASS_ATTR, Mapper.class);//用户配置则从配置中取,如果没设置取默认。
}
解析2源码
public Class<? extends InputFormat<?,?>> getInputFormatClass()
throws ClassNotFoundException {
return (Class<? extends InputFormat<?,?>>)
conf.getClass(INPUT_FORMAT_CLASS_ATTR, TextInputFormat.class);//如果用户设置取用户的,没有则取TextinputfRrmat!!!
}
结论:框架默认使用的是TextInputFormat!!!
补充:继承关系InputFormat>FileInputformat>textInputformat
解析3源码:
static class NewTrackingRecordReader<K,V>
extends org.apache.hadoop.mapreduce.RecordReader<K,V> {
private final org.apache.hadoop.mapreduce.RecordReader<K,V> real;
private final org.apache.hadoop.mapreduce.Counter inputRecordCounter;
private final org.apache.hadoop.mapreduce.Counter fileInputByteCounter;
private final TaskReporter reporter;
private final List<Statistics> fsStats; NewTrackingRecordReader(org.apache.hadoop.mapreduce.InputSplit split,
org.apache.hadoop.mapreduce.InputFormat<K, V> inputFormat,
TaskReporter reporter,
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext)
throws InterruptedException, IOException {
this.reporter = reporter;
this.inputRecordCounter = reporter
.getCounter(TaskCounter.MAP_INPUT_RECORDS);
this.fileInputByteCounter = reporter
.getCounter(FileInputFormatCounter.BYTES_READ); List <Statistics> matchedStats = null;
if (split instanceof org.apache.hadoop.mapreduce.lib.input.FileSplit) {
matchedStats = getFsStatistics(((org.apache.hadoop.mapreduce.lib.input.FileSplit) split)
.getPath(), taskContext.getConfiguration());
}
fsStats = matchedStats; long bytesInPrev = getInputBytes(fsStats);
this.real = inputFormat.createRecordReader(split, taskContext);解析3.1 源码 real来源Linerecordere
long bytesInCurr = getInputBytes(fsStats);
fileInputByteCounter.increment(bytesInCurr - bytesInPrev);
}
解析3.1 源码
public class TextInputFormat extends FileInputFormat<LongWritable, Text> { @Override
public RecordReader<LongWritable, Text>
createRecordReader(InputSplit split,
TaskAttemptContext context) {
String delimiter = context.getConfiguration().get(
"textinputformat.record.delimiter");
byte[] recordDelimiterBytes = null;
if (null != delimiter)
recordDelimiterBytes = delimiter.getBytes(Charsets.UTF_8);
return new LineRecordReader(recordDelimiterBytes);//返回Linerorder,行读取器
}
解析4源码:
public MapContextImpl(Configuration conf, TaskAttemptID taskid,
RecordReader<KEYIN,VALUEIN> reader,//reader即输入对象
RecordWriter<KEYOUT,VALUEOUT> writer,
OutputCommitter committer,
StatusReporter reporter,
InputSplit split) {
super(conf, taskid, writer, committer, reporter);
this.reader = reader;
this.split = split;
}
/**
* Get the input split for this map.
*/
public InputSplit getInputSplit() {
return split;
} @Override
public KEYIN getCurrentKey() throws IOException, InterruptedException {
return reader.getCurrentKey();//调用输入的input 包含一个Linerecorder对象
} @Override
public VALUEIN getCurrentValue() throws IOException, InterruptedException {
return reader.getCurrentValue();
} @Override
public boolean nextKeyValue() throws IOException, InterruptedException {
return reader.nextKeyValue();
}
解析5源码:
public void initialize(InputSplit genericSplit,
TaskAttemptContext context) throws IOException {
FileSplit split = (FileSplit) genericSplit;
Configuration job = context.getConfiguration();
this.maxLineLength = job.getInt(MAX_LINE_LENGTH, Integer.MAX_VALUE);
start = split.getStart();//切片的起始位置
end = start + split.getLength();//切片的结束位置
final Path file = split.getPath(); // open the file and seek to the start of the split
final FileSystem fs = file.getFileSystem(job);
fileIn = fs.open(file); CompressionCodec codec = new CompressionCodecFactory(job).getCodec(file);
if (null!=codec) {
isCompressedInput = true;
decompressor = CodecPool.getDecompressor(codec);
if (codec instanceof SplittableCompressionCodec) {
final SplitCompressionInputStream cIn =
((SplittableCompressionCodec)codec).createInputStream(
fileIn, decompressor, start, end,
SplittableCompressionCodec.READ_MODE.BYBLOCK);
in = new CompressedSplitLineReader(cIn, job,
this.recordDelimiterBytes);
start = cIn.getAdjustedStart();
end = cIn.getAdjustedEnd();
filePosition = cIn;
} else {
in = new SplitLineReader(codec.createInputStream(fileIn,
decompressor), job, this.recordDelimiterBytes);
filePosition = fileIn;
}
} else {
fileIn.seek(start);//很多mapper 去读对应的切片数量
in = new UncompressedSplitLineReader(
fileIn, job, this.recordDelimiterBytes, split.getLength());
filePosition = fileIn;
}
// If this is not the first split, we always throw away first record
// because we always (except the last split) read one extra line in
// next() method.
if (start != 0) {//除了第一个切片
start += in.readLine(new Text(), 0, maxBytesToConsume(start));//匿名写法 输入初始化的时候 对于非第一个切片 读一行放空,算出长度,然后更新起始位置为第二行 这样每一个切片处理完的时候再多处理一行,这样就能保证还原。!!!
}
this.pos = start;
}
解析6实际上调用的就是Mapper中的run方法。
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKeyValue()) {/解析6.1
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
}
解析6.1追踪后实际上调用的是LineRewcorder中的NextKeyValue方法
public boolean nextKeyValue() throws IOException {
if (key == null) {
key = new LongWritable();//Key中要放置偏移量
}
key.set(pos);//偏移量
if (value == null) {
value = new Text();//默认
}
int newSize = 0;
// We always read one extra line, which lies outside the upper
// split limit i.e. (end - 1)
while (getFilePosition() <= end || in.needAdditionalRecordAfterSplit()) {
if (pos == 0) {
newSize = skipUtfByteOrderMark();
} else {
newSize = in.readLine(value, maxLineLength, maxBytesToConsume(pos));//读到真的值了
pos += newSize;
} if ((newSize == 0) || (newSize < maxLineLength)) {
break;
} // line too long. try again
LOG.info("Skipped line of size " + newSize + " at pos " +
(pos - newSize));
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
}
@Override//由nextkeyValue更新值所以直接取值这块 这种取值方式叫做引用传递!!!
public LongWritable getCurrentKey() {
return key;
} @Override
public Text getCurrentValue() {
return value;
}
持续更新中。。。。,欢迎大家关注我的公众号LHWorld.
Hadoop源码篇---解读Mapprer源码Input输入的更多相关文章
- Hadoop源码篇---解读Mapprer源码outPut输出
一.前述 上次讲完MapReduce的输入后,这次开始讲MapReduce的输出.注意MapReduce的原语很重要: "相同"的key为一组,调用一次reduce方法,方法内迭代 ...
- 这篇说的是Unity Input 输入控制器
关于Unity3D是什么.我就不多做解释了.由于工作原因,该系列原创教程不定期更新.每月必然有更新.谢谢各位 Unity Input---输入控制管理器: Edit->Project Setti ...
- 源码篇:SDWebImage
攀登,一步一个脚印,方能知其乐 源码篇:SDWebImage 源码来源:https://github.com/rs/SDWebImage 版本: 3.7 SDWebImage是一个开源的第三方库,它提 ...
- MyBatis 源码篇-MyBatis-Spring 剖析
本章通过分析 mybatis-spring-x.x.x.jar Jar 包中的源码,了解 MyBatis 是如何与 Spring 进行集成的. Spring 配置文件 MyBatis 与 Spring ...
- MyBatis 源码篇-Transaction
本章简单介绍一下 MyBatis 的事务模块,这块内容比较简单,主要为后面介绍 mybatis-spring-1.**.jar(MyBatis 与 Spring 集成)中的事务模块做准备. 类图结构 ...
- MyBatis 源码篇-DataSource
本章介绍 MyBatis 提供的数据源模块,为后面与 Spring 集成做铺垫,从以下三点出发: 描述 MyBatis 数据源模块的类图结构: MyBatis 是如何集成第三方数据源组件的: Pool ...
- MyBatis 源码篇-插件模块
本章主要描述 MyBatis 插件模块的原理,从以下两点出发: MyBatis 是如何加载插件配置的? MyBatis 是如何实现用户使用自定义拦截器对 SQL 语句执行过程中的某一点进行拦截的? 示 ...
- MyBatis 源码篇-日志模块2
上一章的案例,配置日志级别为 debug,执行一个简单的查询操作,会将 JDBC 操作打印出来.本章通过 MyBatis 日志部分源码分析它是如何实现日志打印的. 在 MyBatis 的日志模块中有一 ...
- MyBatis 源码篇-日志模块1
在 Java 开发中常用的日志框架有 Log4j.Log4j2.Apache Common Log.java.util.logging.slf4j 等,这些日志框架对外提供的接口各不相同.本章详细描述 ...
随机推荐
- Java开发小技巧(二):自定义Maven依赖
前言 我们在项目开发中经常会将一些通用的类.方法等内容进行打包,打造成我们自己的开发工具包,作为各个项目的依赖来使用. 一般的做法是将项目导出成Jar包,然后在其它项目中将其导入,看起来很轻松,但是存 ...
- jdk7jdk8新特性概述
在oracle停止对jdk6更新,jdk8发布之后,公司终于要把生产环境更新到jdk7,下面列一下jdk7,8的可能需要关注的新特性. jdk7 G1垃圾回收 fork-join框架 二进制变量 Sw ...
- HDU 4923 Room and Moor (多校第六场C题) 单调栈
Problem Description PM Room defines a sequence A = {A1, A2,..., AN}, each of which is either 0 or 1. ...
- 入门Webpack
---恢复内容开始--- 什么是WebPack,为什么要使用它? 为什要使用WebPack 现今的很多网页其实可以看做是功能丰富的应用,它们拥有着复杂的JavaScript代码和一大堆依赖包.为了简化 ...
- 在Visual Studio Code中开发Office Add-in
作者:陈希章 发表于 2017年7月13日 上一篇 我介绍了如何在Visual Studio中开发Office Add-in,因为有标准的项目模板,一系列配套的工具,尤其是自带的一键调试功能,可以让开 ...
- C#基础知识 简单说明泛型的优点
有关泛型的优缺点在网上有很多篇文章,也足以说明问题,我就不去复制粘贴了(而且内容有些多),由于记性不太好,所以自己做个简单明了的总结. 泛型的优点主要有两个: "性能" " ...
- AOP入门(转)
本文转自http://www.cnblogs.com/yanbincn/archive/2012/06/01/2530377.html Aspect Oriented Programming 面向切 ...
- 自学WPF之XAML(二)控件
摘自<深入浅出WPF>. 在WPF中是数据驱动UI,数据是核心,是主动的,UI从属于数据,并表达数据,是被动的.UI是展示给用户操作的.响应UI操作的元素是控件(control).下面是我 ...
- IDEA热部署(三)---jetty插件调试(转)
我们在开发的时候习惯对于项目的框架进行分层,在idea中对于不同的层,我们使用module来进行划分,不同的module之间是通过maven来进行依赖的. 我们的项目结构是这样的,admin是我们的w ...
- intellij idea svn使用一 导入、更新、提交、解决冲突
大体上是转载,针对版本14有一些特殊的添加. 查看svn的资源库: 下面的多出了一个svn的窗口,在左边有加号可以添加一个svn的库 输入svn的地址,我用的是本地的测试,所以地址为svn://127 ...