hdu_1025(LIS Nlog(N)算法)
题意:自己慢慢读吧。大概就是道路两边建路,给出建路需求,要求两条路不能有交叉,问最多可以建多少条路。
题解:一看数据范围500000,应该是dp,再画个图模拟一下,发现实质就是求最长上升子序列,很自然的数据要求nlogn算法
算法讲解在之前写过,这里直接贴过来:点我哦
坑:输出两个坑,一个是road和roads的区别,还有一个是案例之间有空行
code:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
int q[N];
int stk[N];
int BSearch(int l,int r, int c)
{
while(l<=r){//注意这里应该是定于的时候还要再判断一次。
int m = (l+r)>>;
if(stk[m]==c) {
//printf("id = %d\n",m);
return m;
}
else if(stk[m]<c) l = m+;
else if(stk[m]>c) r = m-;
}
//printf("id = %d\n",l);
return l;
}
int main()
{
int n;
int c = ;
while(~scanf("%d",&n))
{
int cnt = ;
int t1,t2;
memset(stk,-,sizeof(stk));
for(int i = ; i < n; i++){
scanf("%d%d",&t1,&t2);
q[t1] = t2;
}
for(int i = ; i <= n; i++){
if(q[i]>stk[cnt-]){
stk[cnt++] = q[i];
}
else {
int id = BSearch(,cnt-,q[i]);
stk[id] = q[i];
}
}
cnt--;
if(cnt!=)
printf("Case %d:\nMy king, at most %d roads can be built.\n\n",c++,cnt);
else
printf("Case %d:\nMy king, at most %d road can be built.\n\n",c++,cnt);
}
return ;
}
hdu_1025(LIS Nlog(N)算法)的更多相关文章
- O(nlogn)LIS及LCS算法
morestep学长出题,考验我们,第二题裸题但是数据范围令人无奈,考试失利之后,刻意去学习了下优化的算法 一.O(nlogn)的LIS(最长上升子序列) 设当前已经求出的最长上升子序列长度为len. ...
- POJ 1631 Bridging signals(LIS O(nlogn)算法)
Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...
- LIS的优化算法O(n log n)
LIS的nlogn的优化:LIS的优化说白了其实是贪心算法,比如说让你求一个最长上升子序列把,一起走一遍. 比如说(4, 2, 3, 1, 2,3,5)这个序列,求他的最长上升子序列,那么来看,如果求 ...
- 最长上升子序列(LIS)n2 nlogn算法解析
题目描述 给定一个数列,包含N个整数,求这个序列的最长上升子序列. 例如 2 5 3 4 1 7 6 最长上升子序列为 4. 1.O(n2)算法解析 看到这个题,大家的直觉肯定都是要用动态规划来做,那 ...
- hdu 1950 最长上升子序列(lis) nlogn算法【dp】
这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度 ...
- Codeforces 486E LIS of Sequence --树状数组求LIS
题意: 一个序列可能有多个最长子序列,现在问每个元素是以下三个种类的哪一类: 1.不属于任何一个最长子序列 2.属于其中某些但不是全部最长子序列 3.属于全部最长子序列 解法: 我们先求出dp1[i] ...
- 【BZOJ】1049: [HAOI2006]数字序列(lis+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题意:给一个长度为n的整数序列.把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希 ...
- LIS
五:LIS 概念 最长上升子序列(Longest Increasing Subsequence,LIS),在计算机科学上是指一个序列中最长的单调递增的子序列.比如一个序列31 2 6 3 8,他的最长 ...
- 动态规划:最长上升子序列(LIS)
转载请注明原文地址:http://www.cnblogs.com/GodA/p/5180560.html 学习动态规划问题(DP问题)中,其中有一个知识点叫最长上升子序列(longest incre ...
随机推荐
- Paho - MQTT C Cient的实现
来自我的CSDN博客 在前几天,我大致了解了一下Paho C项目,并对其的一些内容进行了翻译.俗话说,光说不练假把戏,今天就给大家讲一下使用Paho的客户端库文件实现MQTT C Client的过 ...
- 520. Detect Capital
Given a word, you need to judge whether the usage of capitals in it is right or not. We define the ...
- NET Framework 版本和依赖关系
原文:https://docs.microsoft.com/zh-cn/dotnet/framework/migration-guide/versions-and-dependencies 每个版本的 ...
- [经验分享]Linux网络连接-VMware+CentOS 7
VMware虚拟机中安装CentOS,进行网络连接,分为两步,内网连接,与外网连接. 前提: 当你正确安装VMware后,网络适配器会增加2个新的网卡:(可在设备管理器->网络适配器中查看) 第 ...
- Python的range函数详细用法
1. >>> range(1,5) #代表从1到5(不包含5) [1, 2, 3, 4]>>> 2. >>> range(1,5,2) #代表从 ...
- 阿里云ECS连接阿里云Redis问题
描述 项目之前的服务器使用Windows,Redis使用阿里云的云数据库Redis版,一切正常. 后来了更换了Linux,也配置好了Redis,但连接阿里云的Redis时却怎么也连接不上 原因 ECS ...
- Ubuntu16.04 编译 OpenJDK7
<深入理解Java虚拟机>第二版第一章实践 准备 Mercurial sudo apt-get install mercurial OpenJDK7 hg clone http://hg. ...
- SpringMVC 如何在页面中获取到ModelAndView绑定的值
springMVC中通过ModelAndView进行后台与页面的数据交互,那么如何在页面中获取ModelAndView绑定的值呢? 1.在JSP中通过EL表达式进行获取(比较常用) 后台:ModelA ...
- css布局--水平垂直居中
1. 使用text-align 和 vertical-align 和 inline-block实现水平垂直居中 html <div class="parent"> &l ...
- C#对象深度克隆
有基础的开发者都应该很明白,对象是一个引用类型,例如: object b=new object(); object a=b; 那么a指向的是b的地址,这样在有些时候就会造成如果修改a的值,那么b的值也 ...