从脚本说起
     在看源码之前,我们一般会看相关脚本了解其初始化信息以及Bootstrap类,Spark也不例外,而Spark我们启动三端使用的脚本如下:
  • %SPARK_HOME%/sbin/start-master.sh
  • %SPARK_HOME%/sbin/start-slaves.sh
  • %SPARK_HOME%/sbin/start-all.sh
  • %SPARK_HOME%/bin/spark-submit
 
     三端启动脚本中对于公共处理部分进行抽取为独立的脚本,如下:
     
spark-config.sh 初始化环境变量 SPARK_CONF_DIR, PYTHONPATH
bin/load-spark-env.sh
初始化环境变量SPARK_SCALA_VERSION,
调用%SPARK_HOME%/conf/spark-env.sh加载用户自定义环境变量
conf/spark-env.sh 用户自定义配置
 
    接下来针对于一些重要的脚本进行一一描述
一. start-daemon.sh
     主要完成进程相关基本信息初始化,然后调用bin/spark-class进行守护进程启动,该脚本是创建端点的通用脚本,三端各自脚本都会调用spark-daemon.sh脚本启动各自进程
     
  • 初始化 SPRK_HOME,SPARK_CONF_DIR,SPARK_IDENT_STRING,SPARK_LOG_DIR环境变量(如果不存在)
  • 初始化日志并测试日志文件夹读写权限,初始化PID目录并校验PID信息
  • 调用/bin/spark-class脚本,/bin/spark-class见下
 
二. bin/spark-class
  • master调用举例:bin/spark-class --class org.apache.spark.deploy.master.Master --host $SPARK_MASTER_HOST --port $SPARK_MASTER_PORT --webui-port $SPARK_MASTER_WEBUI_PORT $ORIGINAL_ARGS
  • 初始化 RUNNER(java),SPARK_JARS_DIR(%SPARK_HOME%/jars),LAUNCH_CLASSPATH信息
  • 调用( "$RUNNER" -Xmx128m -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@")获取最终执行的shell语句
  • 执行最终的shell语句(比如:/opt/jdk1.7.0_79/bin/java -cp /opt/spark-2.1.0/conf/:/opt/spark-2.1.0/jars/*:/opt/hadoop-2.6.4/etc/hadoop/ -Xmx1g -XX:MaxPermSize=256m org.apache.spark.deploy.master.Master --host zqh --port 7077 --webui-port 8080),如果是Client,那么可能为r,或者python脚本
 
三. start-master.sh
     启动Master的脚本,流程如下:
     
  • 用户执行start-master.sh脚本,初始化环境变量SPARK_HOME (如果PATH不存在SPARK_HOME,初始化脚本的上级目录为SPARK_HOME),调用spark-config.sh,调用load-spark-env.sh
  • 如果环境变量SPARK_MASTER_HOST, SPARK_MASTER_PORT,SPARK_MASTER_WEBUI_PORT不存在,进行初始化7077,hostname -f,8080
  • 调用spark-daemon.sh脚本启动master进程(spark-daemon.sh start org.apache.spark.deploy.master.Master 1 --host $SPARK_MASTER_HOST --port $SPARK_MASTER_PORT --webui-port $SPARK_MASTER_WEBUI_PORT $ORIGINAL_ARGS)
 
四. start-slaves.sh
     启动Worker的脚本,流程如下:
    
  • 用户执行start-slaves.sh脚本,初始化环境变量SPARK_HOME,调用spark-config.sh,调用load-spark-env.sh,初始化Master host/port信息,
  • 调用slaves.sh脚本,读取conf/slaves文件并遍历,通过ssh连接到对应slave节点,启动 ${SPARK_HOME}/sbin/start-slave.sh spark://$SPARK_MASTER_HOST:$SPARK_MASTER_PORT
  • start-slave.sh在各个节点中,初始化环境变量SPARK_HOME,调用spark-config.sh,调用load-spark-env.sh,根据$SPARK_WORKER_INSTANCES计算WEBUI_PORT端口(worker端口号依次递增 )并启动Worker进程(${SPARK_HOME}/sbin /spark-daemon.sh start org.apache.spark.deploy.worker.Worker $WORKER_NUM  --webui-port "$WEBUI_PORT" $PORT_FLAG $PORT_NUM $MASTER "$@")
     
五. start-all.sh
     属于快捷脚本,内部调用start-master.sh与start-slaves.sh脚本,并无额外工作
 
六.bin/spark-submit
     任务提交的基本脚本,流程如下:
          
  • 直接调用spark-class脚本进行进程创建(./spark-submit --class org.apache.spark.examples.SparkPi --master spark://zqh:7077 ../examples/jars/spark-examples_2.11-2.1.0.jar 10)
  • 如果是java/scala任务,那么最终调用SparkSubmit.scala进行任务处理(/opt/jdk1.7.0_79/bin/java -cp /opt/spark-2.1.0/conf/:/opt/spark-2.1.0/jars/*:/opt/hadoop-2.6.4/etc/hadoop/ -Xmx1g -XX:MaxPermSize=256m org.apache.spark.deploy.SparkSubmit --master spark://zqh:7077 --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.1.0.jar 10)
 
七.总结
     三端在的脚本主要进行多方面抽取,使代码更加精炼
    • 公共的环境变量由spark-config.sh,bin/load-spark-env.sh进行统一的处理
    • 扩在由conf/spark-env.sh进行配置读取实现
    • 守护进程由spark-daemon.sh进行创建,进行相关的log,pid前置处理
    • spark-class.sh是公共的处理入口脚本
    • Main.java负责对参数的解析组装
    • 最后执行组装好的command,其中支持scala/java/python/r

【Spark2.0源码学习】-2.一切从脚本说起的更多相关文章

  1. 【Spark2.0源码学习】-1.概述

          Spark作为当前主流的分布式计算框架,其高效性.通用性.易用性使其得到广泛的关注,本系列博客不会介绍其原理.安装与使用相关知识,将会从源码角度进行深度分析,理解其背后的设计精髓,以便后续 ...

  2. spark2.0源码学习

    [Spark2.0源码学习]-1.概述 [Spark2.0源码学习]-2.一切从脚本说起 [Spark2.0源码学习]-3.Endpoint模型介绍 [Spark2.0源码学习]-4.Master启动 ...

  3. 【Spark2.0源码学习】-3.Endpoint模型介绍

         Spark作为分布式计算框架,多个节点的设计与相互通信模式是其重要的组成部分.   一.组件概览      对源码分析,对于设计思路理解如下:            RpcEndpoint: ...

  4. 【Spark2.0源码学习】-6.Client启动

    Client作为Endpoint的具体实例,下面我们介绍一下Client启动以及OnStart指令后的额外工作 一.脚本概览      下面是一个举例: /opt/jdk1..0_79/bin/jav ...

  5. 【Spark2.0源码学习】-4.Master启动

         Master作为Endpoint的具体实例,下面我们介绍一下Master启动以及OnStart指令后的相关工作   一.脚本概览      下面是一个举例: /opt/jdk1..0_79/ ...

  6. 【Spark2.0源码学习】-5.Worker启动

         Worker作为Endpoint的具体实例,下面我们介绍一下Worker启动以及OnStart指令后的额外工作   一.脚本概览      下面是一个举例: /opt/jdk1..0_79/ ...

  7. 【Spark2.0源码学习】-9.Job提交与Task的拆分

          在前面的章节Client的加载中,Spark的DriverRunner已开始执行用户任务类(比如:org.apache.spark.examples.SparkPi),下面我们开始针对于用 ...

  8. 【Spark2.0源码学习】-10.Task执行与回馈

         通过上一节内容,DriverEndpoint最终生成多个可执行的TaskDescription对象,并向各个ExecutorEndpoint发送LaunchTask指令,本节内容将关注Exe ...

  9. 【Spark2.0源码学习】-7.Driver与DriverRunner

         承接上一节内容,Client向Master发起RequestSubmitDriver请求,Master将DriverInfo添加待调度列表中(waitingDrivers),下面针对于Dri ...

随机推荐

  1. Visual Studio 2017离线安装包,百度云分流

    Visual Studio正式版发布了,然而只能在线安装.虽然官方有提供了离线的方法,但还是蛮复杂的,所以我打包了两个版本发布至百度云分享. 离线分流 地址:http://pan.baidu.com/ ...

  2. Selenium 上传文件失败,解决办法一

    昨个改程序遇到一个问题,UI上面有需要上传文件的地方.但是我不知道怎么让Selenium完成 点击上传文件按钮->在弹出的文件选择窗口中选择路径和文件,点确定. 要知道弹出窗口属于window的 ...

  3. 查找第K小数

    题目描述 查找一个数组的第K小的数,注意同样大小算一样大. 如  2 1 3 4 5 2 第三小数为3. 输入描述: 输入有多组数据.每组输入n,然后输入n个整数(1<=n<=1000), ...

  4. Python学习路线图

    文章转载自「开发者圆桌」一个关于开发者入门.进阶.踩坑的微信公众号 Python学习路线图你可以通过百度云盘下载观看对应的视频 链接: http://pan.baidu.com/s/1c2zLllA ...

  5. 网络安全实验室 脚本关通关writeup

    [1]key又又找不到了查看源代码.发现key的路径,点击进行了302跳转,抓包,得到key [2]快速口算要2秒内提交答案,果断上python import requests,re s = requ ...

  6. 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2001  Solved: 928[Submit][Sta ...

  7. Linux screen 常用命令

    想必,只要接触过Linux一段时间的人,一定知道screen这个神奇的工具了,它主要有如下些优势: 1. 后台运行:当你在ssh terminal执行shell时,如果网络这时断开,你的程序会怎样?T ...

  8. python——时间与时间戳之间的转换

    http://blog.csdn.net/google19890102/article/details/51355282

  9. linux yum下载文件的存放位置

    默认是: /var/cache/yum也可以在 /etc/yum.conf 指定cachedir=/var/cache/yum #存放目录keepcache=1 #1为保存 0为不保存metadata ...

  10. Spring——<aop:scoped-proxy/>理解

    首先看一下Spring文档上的两个例子对比: <bean id="userPreferences" class="com.foo.UserPreferences&q ...