BZOJ3527[ZJOI]力
无题面神题
原题意:

求所有的Ei=Fi/qi。
题解:
qi被除掉了,则原式中的qj可以忽略。
用a[i]表示q[i],用b[j-i]来表示±1/((j-i)^2)(j>i时为正,j<i时为负)
则求E[j]就是多项式乘法了。
因为是FFT,所以b的下标要增加到0及以上。
这题时限有30s,比某题友好多了。
代码:
type
xs=record
x,y:double;
end;
arr=array[..]of xs;
var
e,t:arr;
a:array[..]of arr;
n,m,i:longint;
function jian(a,b:xs):xs;
begin
jian.x:=a.x-b.x;
jian.y:=a.y-b.y;
end;
function jia(a,b:xs):xs;
begin
jia.x:=a.x+b.x;
jia.y:=a.y+b.y;
end;
function cheng(a,b:xs):xs;
begin
cheng.x:=a.x*b.x-a.y*b.y;
cheng.y:=a.x*b.y+a.y*b.x;
end;
procedure fft(xx,s,nn,mm:longint);
var
i,j:longint;
w:xs;
begin
if nn= then
begin a[xx+,s]:=a[xx,s]; exit; end;
for i:= to nn div - do
begin t[i]:=a[xx,i*+s]; t[i+nn div ]:=a[xx,i*++s]; end;
for i:= to nn- do a[xx,s+i]:=t[i];
fft(xx,s,nn div ,mm*); fft(xx,s+nn div ,nn div ,mm*);
for i:= to nn div - do
begin
j:=s+i;
w:=cheng(e[i*mm],a[xx+,j+nn div ]);
t[j]:=jia(a[xx+,j],w);
t[j+nn div ]:=jian(a[xx+,j],w);
end;
for i:=s to s+nn- do a[xx+,i]:=t[i];
end;
begin
read(m);
for i:= to m- do read(a[,i].x);
for i:= to m- do a[,i].x:=-/(m-i)/(m-i);
for i:=m+ to m*- do a[,i].x:=/(i-m)/(i-m);
n:=;
while n<m* do n:=n*;
for i:= to n- do e[i].x:=cos(pi**i/n);
for i:= to n- do e[i].y:=sin(pi**i/n);
fft(,,n,); fft(,,n,);
for i:= to n- do a[,i]:=cheng(a[,i],a[,i]);
for i:= to n- do e[i].y:=-e[i].y;
fft(,,n,);
for i:=m to m*- do writeln((a[,i].x/n)::);
end.
BZOJ3527[ZJOI]力的更多相关文章
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- 【BZOJ-3527】力 FFT
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1544 Solved: 89 ...
- bzoj3527: [Zjoi2014]力
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
- BZOJ3527 [Zjoi2014]力 【fft】
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...
随机推荐
- 使用localResizeIMG3+WebAPI实现手机端图片上传
前言 惯例~惯例~昨天发表的使用OWIN作为WebAPI的宿主..嗯..有很多人问..是不是缺少了什么 - - 好吧,如果你要把OWIN寄宿在其他的地方...代码如下: namespace Conso ...
- iOS: 在UIViewController 中添加Static UITableView
如果你直接在 UIViewController 中加入一个 UITableView 并将其 Content 属性设置为 Static Cells,此时 Xcode 会报错: Static table ...
- 谈谈React那些小事
前言 说起React,那也是近一年多时间火起来的前端框架,其在Facebook的影响力和大力推广下,已然成为目前前端界的中流砥柱.在如今的前端框架界,React.Vue.Angular三分天下的时代已 ...
- 在node.js中,使用基于ORM架构的Sequelize,操作mysql数据库之增删改查
Sequelize是一个基于promise的关系型数据库ORM框架,这个库完全采用JavaScript开发并且能够用在Node.JS环境中,易于使用,支持多SQL方言(dialect),.它当前支持M ...
- .Net语言 APP开发平台——Smobiler学习日志:快速实现应用中的图片、声音等文件上传功能
最前面的话:Smobiler是一个在VS环境中使用.Net语言来开发APP的开发平台,也许比Xamarin更方便 样式一 一.目标样式 我们要实现上图中的效果,需要如下的操作: 1.从工具栏上的&qu ...
- Mac下启动和停止Mysql服务
方法1. 启动Mysql服务 sudo /Library/StartupItems/MySQLCOM/MySQLCOM start 停止Mysql服务 sudo /Library/Star ...
- [连载]《C#通讯(串口和网络)框架的设计与实现》- 6.通讯控制器的设计
目 录 第六章 通讯控制器的设计... 2 6.1 控制器接口... 2 6.2 串口控制器... 3 6.3 ...
- 菜鸟快飞之JavaScript对象、原型、继承(一)
有前辈说过,在JavaScript中,一切皆对象.由此可见,作为JavaScript的核心之一,对象是有多么重要.虽然今天走亲戚有点累,但还是得写写这个对象,免得吃几天好的,就又忘光了. 1.创建对象 ...
- AlloyRenderingEngine燃烧的进度条
写在前面 Github: https://github.com/AlloyTeam/AlloyGameEngine HTML 5新增了progress标签,那么再去使用AlloyRenderingEn ...
- iOS 3D 之 SceneKit框架Demo分析
Scene Kit 是Apple 向 OS X 开发者们提供的 Cocoa 下的 3D 渲染框架. Scene Kit 建立在 OpenGL 的基础上,包含了如光照.模型.材质.摄像机等高级引擎特性, ...