题意

在区间[0,50000]上有一些整点,并且满足n个约束条件:在区间[ui, vi]上至少有ci个整点,问区间[0, 50000]上至少要有几个整点。

思路

差分约束求最小值。把不等式都转换为>=形式,那么显然有xvi >= xui-1 + ci,那么就在约束图中连一条(ui-1, vi, ci)的边;当然不要忘记隐含的不等式:xi >= xi-1 + 0;   xi-1 >= xi -1.

建完图后SPFA求最长路径即可

代码

[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
#include <string>
#include <queue>
#include <cstring>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, m)   for (int i = begin; i < begin+m; i ++)
using namespace std;

const int MAXN = 50005;
const int oo = 0x3fffffff;
struct Edge{
    int to;
    int w;
    Edge(){}
    Edge(int _to, int _w){  to = _to;   w = _w; }
};
struct Gragh{
    vector <Edge> adj[MAXN];
    queue <int> q;
    int vn;
    int dist[MAXN], inq_num[MAXN];
    bool inq[MAXN];
    void init(int n){
        vn = n;
        for (int i = 0; i <= n; i ++)
            adj[i].clear();
    }
    //if xj >= xi + c, add (i, j, c)
    void add_edge(int u, int v, int w){
        adj[u].push_back(Edge(v, w));
    }
    //spfa calculate longest path
    bool solve(int s, int t){
        while(!q.empty())
            q.pop();
        MEM(inq, false);    MEM(inq_num, 0);    MEM(dist, -1);      //Note : dist shouldn't initially be 0
        dist[s] = 0;    inq[s] = true;  inq_num[s] ++;  q.push(s);
        while(!q.empty()){
            int u = q.front();
            q.pop();
            inq[u] = false;
            for (int i = 0; i < adj[u].size(); i ++){
                int v = adj[u][i].to;
                if (dist[v] < dist[u] + adj[u][i].w){
                    dist[v] = dist[u] + adj[u][i].w;
                    if (!inq[v]){
                        inq[v] = true;
                        inq_num[v] ++;
                        if (inq_num[v] > vn)
                            return false;
                        q.push(v);
                    }
                }
            }
        }
        if (dist[t] < oo){
            return true;
        }
    }
}spfa;
struct intervals{
    int u, v, w;
}inte[MAXN];
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
    int n;
    while(scanf("%d", &n) != EOF){
        int maxn = 0;
        REP(i, 1, n){
            scanf("%d %d %d", &inte[i].u, &inte[i].v, &inte[i].w);
            inte[i].u ++, inte[i].v ++;
            maxn = max(maxn, inte[i].v);
        }
        spfa.init(maxn+1);
        REP(i, 1, maxn){
            spfa.add_edge(i-1, i, 0);
            spfa.add_edge(i, i-1, -1);
        }
        REP(i, 1, n){
            spfa.add_edge(inte[i].u-1, inte[i].v, inte[i].w);
        }
        if (spfa.solve(0, maxn)){
            printf("%d\n", spfa.dist[maxn]);
        }
    }
return 0;
}
[/cpp]

POJ 1201 Intervals (差分约束系统)的更多相关文章

  1. poj 1201 Intervals(差分约束)

    题目:http://poj.org/problem?id=1201 题意:给定n组数据,每组有ai,bi,ci,要求在区间[ai,bi]内至少找ci个数, 并使得找的数字组成的数组Z的长度最小. #i ...

  2. poj 1201 Intervals——差分约束裸题

    题目:http://poj.org/problem?id=1201 差分约束裸套路:前缀和 本题可以不把源点向每个点连一条0的边,可以直接把0点作为源点.这样会快许多! 可能是因为 i-1 向 i 都 ...

  3. PKU 1201 Intervals(差分约束系统+Spfa)

    题目大意:原题链接 构造一个集合,这个集合内的数字满足所给的n个条件,每个条件都是指在区间[a,b]内至少有c个数在集合内.问集合最少包含多少个点.即求至少有多少个元素在区间[a,b]内. 解题思路: ...

  4. poj 1201 Intervals(差分约束)

    做的第一道差分约束的题目,思考了一天,终于把差分约束弄懂了O(∩_∩)O哈哈~ 题意(略坑):三元组{ai,bi,ci},表示区间[ai,bi]上至少要有ci个数字相同,其实就是说,在区间[0,500 ...

  5. POJ 1201 Intervals(图论-差分约束)

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20779   Accepted: 7863 Descri ...

  6. POJ 1201 Intervals(差分约束 区间约束模版)

    关于差分约束详情可阅读:http://www.cppblog.com/menjitianya/archive/2015/11/19/212292.html 题意: 给定n个区间[L,R], 每个区间至 ...

  7. POJ 1201 Intervals || POJ 1716 Integer Intervals 差分约束

    POJ 1201 http://poj.org/problem?id=1201 题目大意: 有一个序列,题目用n个整数组合 [ai,bi,ci]来描述它,[ai,bi,ci]表示在该序列中处于[ai, ...

  8. poj 1201 Intervals 解题报告

    Intervals Time Limit: 2000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu Submit Statu ...

  9. Intervals(差分约束系统)

    http://poj.org/problem?id=1201 题意:给定n个整数闭区间[a,b]和n个整数c,求一个最小的整数集合Z,满足Z里边的数中范围在闭区间[a,b]的个数不小于c个. 思路:根 ...

随机推荐

  1. python 安装 管理包 pip

    2.7的坑里出不来了,现在已经换到3.4了,不存在下列问题. win7下安装pip    http://blog.chinaunix.net/uid-24984661-id-4202194.html ...

  2. Andoid自动判断输入是电话,网址或者Email的方法----Linkify的应用!

    本节要讲的是,当我们在一个EditText输入电话或者网址还是Email的时候,让Android自动判断,当我们输入的是电话,我们点击输入内容将调用打电话程序,当我们输入是网址点击将打开浏览器程序.而 ...

  3. 创建MySQL存储过程示例

    创建MySQL存储过程是学习MySQL数据库必须要掌握的知识,下文对创建MySQL存储过程作了详细的介绍,供您参考学习. AD:2013大数据全球技术峰会课程PPT下载 下文将教您如何创建MySQL存 ...

  4. tomcat下context.xml中JNDI数据源配置

    jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API.命名服务将名称和对象联系起来,使得我们可以用 ...

  5. VS输入法问题

    问题描述:启动VS,打开Winform等的界面设计,无法为控件输入中文,另外,运行程序,无法在TextBox等控件中输入中文: 本人的系统环境:Win7旗舰版,VS2008.VS2010和VS2012 ...

  6. oracle连接数据

    1.源代码 string connString = "User ID=scott;Password=yanhong;Data Source=(DESCRIPTION = (ADDRESS_L ...

  7. C#反射技术的相关使用方法

    1.获取同一程序集的类型实例 无参数构造函数 Type t=Type.GetType("AppCode.Employee"); object emp=t.Assembly.Crea ...

  8. HDFS Protocol修改流程

        相对于1.x版本的Hadoop,2.x版本的Hadoop采用了Protocol Buffer作为序列化反序列化工具,以及RPC通讯工具.这样当我们对Hadoop源码进行修改之前,就需要了解Ha ...

  9. session原理总结

    session原理总结 session多服务器共享的方案梳理 session原理 session的工作原理 客户端禁用cookie时session解决方案[转]

  10. IDL_GUI

    菜单栏设计 PRO IDLGui ;构建界面 ;显示 ;添加事件 tlb=WIDGET_BASE(xsize=400,ysize=400,/column,mbar=mbar);实现基类 file=WI ...