permu

  [Description]

    给定两个1~N的全排列A,B。有两个指针q和p,一开始q、p都为0,可执行以下三种操作:
    1.q+1;2.p+1;3.q+1且p+1(Aq+1≠Bp+1时才可以这么做)。

  [Hint]

    <=1000000


  f[i][j]代表p指i,q指j的时候还需要多少步才能到终点

  30分转移:f[i][j]=f[i+1][j+1]+1(a[i+1]!=a[j+1]) f[i][j]=min(f[i+1][j],f[i][j+1])+1.

  题目中有一个性质。。然而之前并没看到。。A和B数组是1-n的全排列

  然后意思就是 f[i][j]=min(f[i+1][j],f[i][j+1])+1 这种转移最多n次

  第一种转移,我们可以简单地用队列处理:先将f[n][0~n]存在队列中,然后将f[n][0]出队,将f[n][1~n]++,变成f[n-1][0~n-1],再往队尾添加f[n-1][n],对f[i+1][0~n]转移到f[i][0~n]的情况亦然。

  但这只是能解决第一种转移,第二种转移需要另作处理。对于f[i+1][0~n]到f[i][0~n]的转移,如果a[i+1]==b[j+1],f[i+1][j+1]就无法通过第一种转移转移到f[i][j]。对每个i,也存在且仅存在一个j,使得f[i][j]无法进行第一种转移。
  对于第二种转移我们可以这样简化:
  因为a[i+1]==b[j+1],所以a[i+1]!=b[j],所以f[i][j-1]==f[i+1][j]+1。
  所以f[i][j]=min{f[i][j-1],f[i][j+1]+1} (a[i+1]==b[j+1])
  有了这个方程,就可以在第一种转移完成后,找到使得a[i+1]==b[j+1]的j,取f[i][j]为队列中其前驱元素的值与其后继元素的值加1的较小值为f[i][j]的值。

  

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath> #define maxn 1000001 using namespace std; inline int in()
{
int x=,f=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-')ch=getchar(),f=-;
while(ch<=''&&ch>='')x=x*+ch-'',ch=getchar();
return f*x;
} int q[maxn*],fpos[maxn],a[maxn]; int main()
{
freopen("permu.in","r",stdin);
freopen("permu.out","w",stdout);
int n,u,head=,tail;
n=in();
tail=n;
for(int i=;i<=n;i++)a[i]=in();
for(int i=;i<=n;i++)u=in(),fpos[u]=i;
for(int i=;i<=n;i++)q[i]=n-i;
for(int i=n;i;i--){
int t=fpos[a[i]];head++;
q[head+t-]=min(q[head+t-],q[head+t]+);
q[++tail]=;
}
printf("%d",q[head]+n);
return ;
}

【DP】permu的更多相关文章

  1. Kattis - honey【DP】

    Kattis - honey[DP] 题意 有一只蜜蜂,在它的蜂房当中,蜂房是正六边形的,然后它要出去,但是它只能走N步,第N步的时候要回到起点,给出N, 求方案总数 思路 用DP 因为N == 14 ...

  2. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  3. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  4. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  5. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  6. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  7. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  8. HackerRank - common-child【DP】

    HackerRank - common-child[DP] 题意 给出两串长度相等的字符串,找出他们的最长公共子序列e 思路 字符串版的LCS AC代码 #include <iostream&g ...

  9. 【BZOJ4358】permu kd-tree

    [BZOJ4358]permu Description 给出一个长度为n的排列P(P1,P2,...Pn),以及m个询问.每次询问某个区间[l,r]中,最长的值域连续段长度. Input 第一行两个整 ...

随机推荐

  1. angularJS 数组更新时重新排序之解决方案一:这个坑,绕开吧,不跳了……

    今天产品大人发现了一bug,图表数据和数据库总是对不上,原因是当前端更新数组时,angularJS默认对数组进行了排序. // 点击事件:input复选框 $scope.fnClickUpdateAr ...

  2. 关于MongoDb Replica Set的故障转移集群——理论篇

    自从10 gen用Replica Set取代Master/Slave方案后生活其实已经容易多了,但是真正实施起来还是会发现各种各样的小问题,如果不小心一样会栽跟头. 在跟Replica Set血拼几天 ...

  3. 深入浅出MongoDB(三)环境搭建

    上次的博文深入浅出MongoDB(二)概述中我们已经将MongoDB的相关概念讲解了一下,接下来我们继续进行MongoDB学习.在学习之前,大家首先需要在自己的电脑上安装MongoDB. 1.安装 安 ...

  4. Php中正则小结(一)

    一.概念 语法模式类似perl.表达式必须用分隔符闭合,比如一个正斜杠(/). 分隔符可以是任意非字母非数字,除反斜杠(\)和空字节之外的非空白ascii字符 如果分隔符 在表达式中使用,需要使用反斜 ...

  5. Android环境配置Sencha Touch

    转自http://www.phonegap100.com/portal.php?mod=view&aid=19 作为你开发的一部分,为安卓设备开发的 Sencha Touch框架应该在安卓虚拟 ...

  6. UltraEdit中使用正则表达式

    正则表达式 (UltraEdit Syntax): % 匹配行首 - 表明要搜索的字符串一定在行首. $ 匹配行尾 - 表明要搜索的字符串一定在行尾 ? 匹配除换行符外的任一单个字符. * 匹配任意个 ...

  7. java android 中的Toast

    package com.example.my1; import android.os.Bundle;import android.app.Activity;import android.content ...

  8. Learning Scrapy笔记(七)- Scrapy根据Excel文件运行多个爬虫

    摘要:根据Excel文件配置运行多个爬虫 很多时候,我们都需要为每一个单独的网站编写一个爬虫,但有一些情况是你要爬取的几个网站的唯一不同之处在于Xpath表达式不同,此时要分别为每一个网站编写一个爬虫 ...

  9. STM32F0xx_ADC采集电压配置详细过程

    前言 关于ADC这一块的功能基本上也算是CortexM芯片的标配了.ST的每一块芯片都有这个功能,只是说因型号不同,通道数.位数等有所不同.STM8的芯片大多数都是10的,也就是说分辨率可达到:参考电 ...

  10. 深入理解Java String#intern() 内存模型

    原文出处: codelog.me 大家知道,Java中string.intern()方法调用会先去字符串常量池中查找相应的字符串,如果字符串不存在,就会在字符串常量池中创建该字符串然后再返回. 字符串 ...