分数规划经典。开始精度1e-3/1e-4都不行,1e-5就A了

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const double eps=1e-5;
const int nmax=5e4+5;
const int inf=0x7f7f7f7f;
struct node{
long double x;int cur;
bool operator<(const node&rhs)const{
return x<rhs.x;}
};
node ns[nmax];
int a[nmax],b[nmax];
ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
}
int main(){
int n=read(),K=read();
rep(i,1,n) b[i]=read(),a[i]=read();
double l=0,r=10000,mid,ans,sm;
while(r-l>eps){
mid=(r+l)/2;
rep(i,1,n) ns[i].cur=i,ns[i].x=a[i]*1.0-mid*b[i];
sort(ns+1,ns+n+1);
sm=0;rep(i,n-K+1,n) sm+=ns[i].x;
if(sm>=0) ans=l=mid;
else r=mid;
}
ll ta=0,tb=0;
rep(i,n-K+1,n) ta+=a[ns[i].cur],tb+=b[ns[i].cur];
ll tp=gcd(ta,tb);
printf("%lld/%lld\n",ta/tp,tb/tp);
return 0;
}

  

基准时间限制:3 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注
N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数),从中选出K件物品(K <= N),使得单位体积的价值最大。
Input
第1行:包括2个数N, K(1 <= K <= N <= 50000)
第2 - N + 1行:每行2个数Wi, Pi(1 <= Wi, Pi <= 50000)
Output
输出单位体积的价值(用约分后的分数表示)。
Input示例
3 2
2 2
5 3
2 1
Output示例
3/4

51nod1257 背包问题 V3的更多相关文章

  1. 51nod 1257 背包问题 V3

    1257 背包问题 V3 基准时间限制:3 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2.. ...

  2. 1257 背包问题 V3(二分)

    1257 背包问题 V3 3 秒 131,072 KB 80 分 5 级题 题意 : 从n个物品中选出k个,使单位体积价值最大 思路: 一开始正面想,试过很多种,排序什么的..总是结果不对,最后想到二 ...

  3. 51nod 1257 背包问题 V3(分数规划)

    显然是分数规划...主要是不会求分数的形式,看了题解发现自己好傻逼QAQ 还是二分L值算出d[]降序选K个,顺便记录选择时候的p之和与w之和就可以输出分数形式了... #include<iost ...

  4. 1257 背包问题 V3——分数规划

    N个物品的体积为W1,W2......Wn(Wi为整数),与之相对应的价值为P1,P2......Pn(Pi为整数),从中选出K件物品(K <= N),使得单位体积的价值最大. Input 第1 ...

  5. 51nod 1257 背包问题 V3(这不是背包问题是二分)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 题解:不能按照单位价值贪心,不然连样例都过不了 要求的 ...

  6. 51nod 1257 01分数规划/二分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 1257 背包问题 V3 基准时间限制:3 秒 空间限制:1310 ...

  7. 51nod——1086、1257背包问题V2(多重背包二进制拆分转01) V3(分数规划+二分贪心)

    V3其实和dp关系不大,思想挂标题上了,丑陋的代码不想放了.

  8. HDU 3466 Proud Merchants(背包问题,要好好理解)

    Problem Description Recently, iSea went to an ancient country. For such a long time, it was the most ...

  9. 【ACM】Knapsack without repetition - 01背包问题

    无界背包中的状态及状态方程已经不适用于01背包问题,那么我们来比较这两个问题的不同之处,无界背包问题中同一物品可以使用多次,而01背包问题中一个背包仅可使用一次,区别就在这里.我们将 K(ω)改为 K ...

随机推荐

  1. 在JavaScript中判断整型的N种方法

    原文:http://www.cnblogs.com/YcYYcY/p/3759184.html 整数类型(Integer)在JavaScript经常会导致一些奇怪的问题.在ECMAScript的规范中 ...

  2. Javacript中(function(){})() 与 (function(){}()) 区别 {转}

    这个问题可以从不同的角度来看,但从结果上来说 :他们是一样的.首先,如果从AST(抽象语法树)的角度来看,两者的AST是一模一样的,最终结果都是一次函数调用.因此,就解析器产生的结果论而言,两者是没有 ...

  3. Sqli-labs less 33

    Less-33 本关和上一关的payload是一样的 http://127.0.0.1/sqli-labs/Less-33/?id=-1%df%27union%20select%201,user(), ...

  4. Ogre1.8.1源码编译

    本文的编译环境为Windows7_SP1 + VS2010_SP1 + CMake2.8.11   :) 资源下载 1. 下载Ogre1.8.1的源代码,下载链接地址:http://www.ogre3 ...

  5. HDU 4569 Special equations(数学推论)

    题目 //想不出来,看了解题报告 /* 题意:给你一个最高幂为4的一元多项式,让你求出一个x使其结果模p*p为0. 题解:f(x)%(p*p)=0那么一定有f(x)%p=0,f(x)%p=0那么一定有 ...

  6. 高质量图形库:pixellib

    点这里 pixellib 是高质量 2D 图形库: 高质量抗锯齿,矢量图形绘制 多种图像格式: RGB, BGR, ARGB, ABGR, RGBA, BGRA 8 / 15 / 16 / 24 / ...

  7. solr的collection,shard,replica,core概念

    一.collection 1.由多个cores组成一个逻辑索引叫做一个collection.一个collection本质上是一个可以跨越多个核的索引,同时包含冗余索引. 2.collection由不同 ...

  8. 浅谈Spark Kryo serialization

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3833985.html 最近在使用spark开发过程中发现当数据量很大时,如果cache数据将消耗很多的内 ...

  9. Sqoop详细介绍包括:sqoop命令,原理,流程

    一简介 Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS ...

  10. Qt之获取本机网络信息(MAC, IP等等,很全)

    经常使用命令行来查看一些计算机的配置信息. 1.首先按住键盘上的“开始键+R键”,然后在弹出的对话框中输入“CMD”,回车 另外,还可以依次点击 开始>所有程序>附件>命令提示符 2 ...