http://poj.org/problem?id=1077

http://acm.hdu.edu.cn/showproblem.php?pid=1043

X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!。这就是康托展开。康拓展开可以用来表示排列状态,对于本题的9个数字的所有排列只需要9位,所有状态总共362880个.对每个状态,我们都能得到一个不重复的状态编号,用这个状态编号可以查重

Astar算法,就是一个给所有状态一个评估函数,优先选取较优状态向下搜的最好优先直接搜索算法,对于本题,我们设F(n)=g(n)+h(n)为估价函数,设g(n)为到达该状态已经走过的步数,h(n)为到最终答案的曼哈顿距离

因为该拼图不能改变除了x以外的数字的逆序数奇偶性,所以若x以外的数字逆序数为奇数,则无法得到答案,直接输出

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cctype>
using namespace std;
const int base[9]={1,1,2,6,24,120,720,5040,40320};
const int dx[4]={1,-1,0,0};
const int dy[4]={0,0,1,-1};
const int maxh=362880;
const int des=0;
struct pnt{
int maz[3][3];
int h,g;
int x,y;
int hashCode;
bool operator < (pnt p)const {
return h+g!=p.h+p.g?h+g>p.h+p.g:g>p.g;
}
int gethashcode(){
int ans=0;
for(int i=0;i<9;i++){
int cnt=0;
for(int j=0;j<i;j++){
if(maz[j/3][j%3]>maz[i/3][i%3]){
cnt++;
}
}
ans+=base[i]*cnt;
}
return hashCode=ans;
}
int geth(){
int ans=0;
for(int i=0;i<3;i++){
for(int j=0;j<3;j++){
int t=maz[i][j]-1;
if(t<9) ans+=abs(i-t/3)+abs(j-t%3);
}
}
return ans;
}
bool judge(){
int cnt=0;
for(int i=0;i<9;i++){
for(int j=0;j<i;j++){
if(maz[i/3][i%3]<9&&maz[j/3][j%3]<9&&maz[i/3][i%3]<maz[j/3][j%3])cnt++;
}
}
return (cnt&1)==0;
}
};
bool in(int tx,int ty){
return tx>=0&&tx<3&&ty>=0&&ty<3;
} int vis[maxh+1];
int pre[maxh+1]; void astar(pnt s){
priority_queue <pnt>que;
que.push(s);
while(!que.empty()){
pnt f=que.top();que.pop();
for(int i=0;i<4;i++){
pnt t=f;
t.x+=dx[i];
t.y+=dy[i];
if(in(t.x,t.y)){
swap(t.maz[t.x][t.y],t.maz[f.x][f.y]);
t.hashCode=t.gethashcode();
if(vis[t.hashCode]==-1){
vis[t.hashCode]=i;
t.g++;
pre[t.hashCode]=f.hashCode;
t.h=t.geth();
que.push(t);
}
if(t.hashCode==des)return ;
}
}
}
}
char ans[maxh+1];
void print(){
int nxt=des;
int len=0;
while(pre[nxt]!=-1){
switch(vis[nxt]){
case 0:
ans[len++]='d';
break;
case 1:
ans[len++]='u';
break;
case 2:
ans[len++]='r';
break;
case 3:
ans[len++]='l';
break;
}
nxt=pre[nxt];
}
for(int i=len-1;i>=0;i--){
putchar(ans[i]);
}
puts("");
}
char buff[300];
pnt s;
bool input(){
if(gets(buff)==NULL)return false;
int j=0;
for(int i=0;i<9;i++){
while(!isalnum(buff[j])){j++;}
if(buff[j]>='0'&&buff[j]<='9'){
s.maz[i/3][i%3]=buff[j]-'0';
}
else{
s.maz[i/3][i%3]=9;
s.x=i/3;
s.y=i%3;
}
j++;
}
return true;
}
int main(){
while(input()){
memset(vis,-1,sizeof(vis));
memset(pre,-1,sizeof(pre));
if(!s.judge()){
puts("unsolvable");
continue;
}
s.hashCode=s.gethashcode();
if(s.hashCode==des){
puts("");
continue;
}
vis[s.hashCode]=-2;
s.g=0;s.h=s.geth();
astar(s);
print();
}
return 0;
}

  

POJ 1077 && HDU 1043 Eight A*算法,bfs,康托展开,hash 难度:3的更多相关文章

  1. HDU 1043 Eight(双向BFS+康托展开)

    http://acm.hdu.edu.cn/showproblem.php?pid=1043 题意:给出一个八数码,求出到达指定状态的路径. 思路:路径寻找问题.在这道题里用到的知识点挺多的.第一次用 ...

  2. Eight POJ - 1077 HDU - 1043 八数码

    Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...

  3. HDU - 1430 魔板 【BFS + 康托展开 + 哈希】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1430 思路 我刚开始 想到的 就是 康托展开 但是这个题目是 多组输入 即使用 康托展开 也是会T的 ...

  4. POJ 1077 HDU 1043 Eight (IDA*)

    题意就不用再说明了吧......如此经典 之前想用双向广搜.a*来写,但总觉得无力,现在用IDA*感觉其他的解法都弱爆了..............想法活跃,时间,空间消耗很小,给它跪了 启发式搜索关 ...

  5. HDU_1043 Eight 【逆向BFS + 康托展开 】【A* + 康托展开 】

    一.题目 http://acm.hdu.edu.cn/showproblem.php?pid=1043 二.两种方法 该题很明显,是一个八数码的问题,就是9宫格,里面有一个空格,外加1~8的数字,任意 ...

  6. 洛谷 P2578 [ZJOI2005]九数码游戏【bfs+康托展开】

    只有9!=362880个状态,用康托展开hash一下直接bfs即可 #include<iostream> #include<cstdio> #include<cstrin ...

  7. [算法总结]康托展开Cantor Expansion

    目录 一.关于康托展开 1.什么是康托展开 2.康托展开实现原理 二.具体实施 1.模板 一.关于康托展开 1.什么是康托展开 求出给定一个由1n个整数组成的任意排列在1n的全排列中的位置. 解决这样 ...

  8. BFS(八数码) POJ 1077 || HDOJ 1043 Eight

    题目传送门1 2 题意:从无序到有序移动的方案,即最后成1 2 3 4 5 6 7 8 0 分析:八数码经典问题.POJ是一次,HDOJ是多次.因为康托展开还不会,也写不了什么,HDOJ需要从最后的状 ...

  9. HDU 1043 Eight (A*算法)

    题目大意:裸的八数码问题,让你输出空格的一条合法移动路径 首先利用康托展开对排列编号,可以预处理出排列,就不必逆展开了 然后利用A*算法求解 A*算法是一种启发式搜索,具体实现要用到优先队列/堆,不同 ...

随机推荐

  1. JavaWeb学习总结(六)—HttpServletResponse

    Response概述: response是Servlet.service方法的一个参数,类型为javax.servlet.http.HttpServletResponse.在客户端发出每个请求时,服务 ...

  2. Ubuntu系统下面软件安装更新命令

    在ubuntu服务器下安装包的时候,经常会用到sudo apt-get install 包名 或 sudo pip install 包名,那么两者有什么区别呢? 1.区别 pip用来安装来自PyPI( ...

  3. LINUX多线程(一)(创建和退出)

    1. Linux多线程概述 1.1. 概述 进程是系统中程序执行和资源分配的基本单位.每个进程有自己的数据段.代码段和堆栈段.这就造成进程在进行切换等操作时都需要有比较负责的上下文切换等动作.为了进一 ...

  4. Python 学习笔记 - 10.类(Class) 1

    定义 Python 的 Class 比较特别,和我们习惯的静态语言类型定义有很大区别. 1. 使用一个名为 __init__ 的方法来完成初始化.2. 使用一个名为 __del__ 的方法来完成类似析 ...

  5. 选择排序算法Java与Python实现

    Java 实现 package common; public class SimpleArithmetic { /** * 选择排序 * 输入整形数组:a[n] [4.5.3.7] * 1. 取数组编 ...

  6. 启动eclipse说在sdk目录下的platforma-tools下面找不到adb.exe

      adb是什么?adb有什么用?adb工具如何用? 是用来管理模拟器和真机的通用调试工具,该工具功能强大,直接打开cmd即可使用adb命令,adb的全称为Android Debug Bridge,是 ...

  7. 让你的linux操作系统更加安全【转】

    BIOS安全 记着要在BIOS设置中设定一个BIOS密码,不接收软盘启动.这样可以阻止不怀好意的人用专门的启动盘启动你的Linux系统,并避免别人更改BIOS设置,如更改软盘启动设置或不弹出密码框直接 ...

  8. Unity5中叹为观止的实时GI效果

    http://www.manew.com/thread-43970-1-1.html 今天为大家分享unity与Alex Lovett共同使用unity5制作的Shrine Arch-viz Demo ...

  9. C#中操作txt,抛出“正由另一进程使用,因此该进程无法访问此文件”

    将你的File.Create(fileName); //创建fileName路径的文本改为 1 2 3 using (FileStream fs = File.Create(fileName)){} ...

  10. 5.4.1 Selenium2启动空浏览器

    在Web自动化测试中,必须考虑不同浏览器对网站的兼容性测试,所以我们首先介绍如何用webDriver代码打开不同的浏览器. 本节介绍的是在Selenium2启动浏览器时,启动一个干净的没有任务插件及c ...