Optimal Milking

Time Limit: 2000MS Memory Limit: 30000K

Total Submissions: 13968 Accepted: 5044

Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can “process” at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

  • Lines 2.. …: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

Sample Input

2 3 2

0 3 2 1 1

3 0 3 2 0

2 3 0 1 0

1 2 1 0 2

1 0 0 2 0

Sample Output

2

Source

USACO 2003 U S Open

题意:有c头奶牛和k个挤奶器,奶牛之间,挤奶器之间,奶牛与挤奶器之间都有一定的距离,问使c头奶牛都能挤奶的最大距离的最小值;

做法:距离问题,怎样知道任意点之间的距离,而且是最短距离,最短路算法floyd.

怎样求最大距离的最小值:由于数据量比较大,不能枚举,采用二分;

要确定二分的值是不是正确,就要用Dinic算法求出最大流看看是否>=c

#include <map>
#include <list>
#include <climits>
#include <cmath>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-9
#define LL long long
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define CRR fclose(stdin)
#define CWW fclose(stdout)
#define RR freopen("input.txt","r",stdin)
#define WW freopen("output.txt","w",stdout) const int Max = 300; int Map[Max][Max]; int Dis[Max][Max]; bool vis[Max]; bool sign[Max][Max]; int K,c,m; int n; void BuildGraph(int MaxNum)//建立残留网络
{
memset(Map,0,sizeof(Map));
for(int i=K+1;i<=n;i++)
{
Map[0][i]=1;//将每一头奶牛与源点建立弧,对于每一头奶牛只去一个挤奶器
}
for(int i=1;i<=K;i++)
{
Map[i][n+1]=m;//将每个挤奶器与汇点建立弧,对于每个挤奶器最多接受m头奶牛
}
for(int i=K+1;i<=n;i++)
{
for(int j=1;j<=K;j++)
{
if(Dis[i][j]<=MaxNum)//限制条件
{
Map[i][j]=1;
}
}
}
}
bool BFS()//Dinic算法,建立层次网络;
{
memset(vis,false,sizeof(vis));
memset(sign,false,sizeof(sign));
int a;
queue<int>Q;
vis[0]=true;
Q.push(0);
while(!Q.empty())
{
a=Q.front();
Q.pop();
for(int i=0;i<=n+1;i++)
{
if(!vis[i]&&Map[a][i])
{
vis[i]=true;
sign[a][i]=true;
Q.push(i);
}
}
}
if(vis[n+1])//当标记不到汇点的时候说明残留网络中没有增广路,已经求得最大流,算法结束
{
return true;
}
return false;
}
int DFS(int s,int num)//
{
if(s==n+1)
{
return num;
}
int sum = num;
for(int i=0;i<=n+1;i++)
{
if(sign[s][i])
{
int ans=DFS(i,min(Map[s][i],num));//进行多次的增广,
Map[s][i]-=ans;
Map[i][s]+=ans;
num-=ans;
if(!num)//如果残余容量为零,则不必再增广
{
break;
}
}
}
return sum-num;
}
int main()
{
while(~scanf("%d %d %d",&K,&c,&m))
{
n=K+c;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
scanf("%d",&Dis[i][j]);
if(!Dis[i][j])
{
Dis[i][j]=INF;
}
}
}
for(int k=1;k<=n;k++)//通过floyd算法计算任意点之间的距离
{
for(int i=1;i<=n;i++)
{
if(Dis[i][k]!=INF)
{
for(int j=1;j<=n;j++)
{
Dis[i][j]=min(Dis[i][j],Dis[i][k]+Dis[k][j]);
} }
}
}
int L=0,R=10000;
while(L<R)//通过不断的二分找到满足条件的最小值
{
int mid = (L+R)/2;
int sum = 0;
BuildGraph(mid);
while(BFS())//Dinic算法,直到不能增广时结束
{
sum+=DFS(0,INF);//计算有多少的奶牛挤奶
}
if(sum>=c)
{
R=mid;
}
else
{
L=mid+1;
}
}
printf("%d\n",R);//R就是所要求的最大距离的最小值
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏的更多相关文章

  1. Pots 分类: 搜索 POJ 2015-08-09 18:38 3人阅读 评论(0) 收藏

    Pots Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11885 Accepted: 5025 Special Judge D ...

  2. HDU 1532 Drainage Ditches 分类: Brush Mode 2014-07-31 10:38 82人阅读 评论(0) 收藏

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. HDU 1272 小希的迷宫(并查集) 分类: 并查集 2015-07-07 23:38 2人阅读 评论(0) 收藏

    Description 上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就 ...

  4. Codeforces 343D Water Tree 分类: Brush Mode 2014-10-05 14:38 98人阅读 评论(0) 收藏

    Mad scientist Mike has constructed a rooted tree, which consists of n vertices. Each vertex is a res ...

  5. HDu 1001 Sum Problem 分类: ACM 2015-06-19 23:38 12人阅读 评论(0) 收藏

    Sum Problem Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  6. Python调用C可执行程序(subprocess) 分类: python 服务器搭建 C/C++ shell 2015-04-13 21:03 87人阅读 评论(0) 收藏

    从Python 2.4开始,Python引入subprocess模块来管理子进程,以取代一些旧模块的方法:如 os.system.os.spawn.os.popen.popen2.commands. ...

  7. /var/log目录下的20个Linux日志文件功能详解 分类: 服务器搭建 linux内核 Raspberry Pi 2015-03-27 19:15 80人阅读 评论(0) 收藏

    如果愿意在Linux环境方面花费些时间,首先就应该知道日志文件的所在位置以及它们包含的内容.在系统运行正常的情况下学习了解这些不同的日志文件有助于你在遇到紧急情况时从容找出问题并加以解决. 以下介绍的 ...

  8. shell入门之流程控制语句 分类: 学习笔记 linux ubuntu 2015-07-10 16:38 89人阅读 评论(0) 收藏

    1.case 脚本: #!/bin/bash #a test about case case $1 in "lenve") echo "input lenve" ...

  9. IOS第三方数据库--FMDB 分类: ios技术 2015-03-01 09:38 57人阅读 评论(0) 收藏

    iOS中原生的SQLite API在使用上相当不友好,在使用时,非常不便.于是,就出现了一系列将SQLite API进行封装的库,例如FMDB.PlausibleDatabase.sqlitepers ...

随机推荐

  1. PostgreSQL Replication之第十章 配置Slony(5)

    10.5 给复制添加表和管理的问题 一旦我们增加了此表到系统中,我们可以将它添加到复制设置.这样做有点复杂.首先,我们必须创建我们自己的新表集合并把这个和我们已经有的表合并.因此,过一段时间,我们将有 ...

  2. Leetcode: Max Sum of Rectangle No Larger Than K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  3. 超炫的3D HTML源代码

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  4. 轉發和重定向-JSP

    最近在復習JSP,寫案例時遇到轉發和重定向的問題,忽然忘記了好多東西.趕緊搜索了下,感覺還是比較常用的. 轉:http://blog.csdn.net/CYHJRX/article/details/3 ...

  5. C#: XML Serializer

    这里主要讲如何将一个class序列化为一个string.如下一个class: public class OrderedItem { private string itemName; private s ...

  6. HDU 4900 NO ACM NO LIFE(概率+枚举+搜索)(2014 Multi-University Training Contest 4)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4900 Problem Description There is an old country and ...

  7. .NET 4.0 MemoryCache with SqlChangeMonitor

    Summary There isn't a lot of documentation on the internet about how to use the SqlChangeMonitor wit ...

  8. Java实现文件的读写,复制

    import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.FileInputStr ...

  9. Hadoop之TaskAttemptContext类和TaskAttemptID类

    先来看看TaskAttemptContext的类图 : Figure1:TaskAttemptContext类图 用户向Hadoop提交Job(作业),Job在JobTracker对象的控制下执行.J ...

  10. MyEcplise中关于部署文件不成功的问题

    MyEclipse 点击 部署 按钮 无效   正常情况下,当我们点击MyEclipse任务栏上的部署按钮时,会弹出项目部署框,如下图:     但我们有时也会遇到点击部署按钮怎么也弹不出项目部署框的 ...