Miller-Rabbin 素性测试 和 Pollard_rho整数分解
今天学习一下Miller-Rabbin 素性测试 和 Pollard_rho整数分解。
两者都是概率算法。
Miller_Rabbin素性测试是对简单伪素数pseudoprime测试的改进。
(pseudoprime测试, POJ 3641 pseudoprime numbers
简单伪素数pseudoprime的原理是费马小定理的逆命题。
费马小定理:p是素数,an-1≡1 mod p。
逆命题几乎成立。 满足逆命题叫做以a为基的伪素数。
几乎是因为被证明存在无数多个合数满足逆命题,叫做Carmichael数。Carmichael数的密度极小,1e8范围内只有255个。
(UVa 10006 Carmichael Number
改进的测试方法的原理是欧拉给出的定理。
x2≡1 mod pe,p是奇素数,这个方程只有两个解 x = -1和 x = 1。(还可以用了判断二次剩余
证明可以看算法导论定理31.34
这个定理的逆否命题对2也成立,也就是说模n如果有x2≡1 mod n,x ≠ 1且 x ≠ -1,那么n是合数。
利用这点可以构造一个证明n是合数的过程witness。
bool witness(ll a,ll n)//a是1~n-1范围内随机选取的基。
{
int t = ;
ll u = n-;
while((u&^)) { u>>=; t++; } //计算n-1 = 2^t*d,用于反复平方
ll x = powMod(a,u,n), y;
while(t--){
y = mulMod(x,x,n);
if(y == && x != && x != n-) return true; //如果y = x^2 = 1 mod n 存在 x != 1且 x != n-1说明是合数
x = y;
}
return x != ;
}
对于Carmichael数这种测试方法也有效,证明这里略过。
出错概率大概是1/2^k,k是测试次数。
int64的乘法可能会溢出,需要自行编写函数mul_mod()完成计算。
Pollard_rho整数分解
Pollard_rho是用f(x) = x^2 + c mod n 产生伪随机序列。d = gcd(y-x,n),如果 d > 1,那么 y - x是 n的一个因子q的k倍,然后再做分解就好。
循环大概会在期望Θ(sqrt(p))的复杂度找到n的一个因子p。如果不存在的话会比较慢,所以先用MillerRabbin判断一下是不是素数n。
p≤sqrt(n), 所以有Θ(n^(1/4))。
证明没看懂。。。(似乎是k q有 sqrt(n)个, 而 y - x 的组合命中 一个 k q 期望 也是要 sqrt(n)次
序列是伪随机,c设置的不好,可能找不到因子就循环了,可以用flody判圈法。
(一般使用的是改进过的flody判圈法, y的步进是倍增的。
参考资料:
《算法导论第31章 数论算法》
https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
Pollard_rho
Miller-Rabbin 素性测试 和 Pollard_rho整数分解的更多相关文章
- Light OJ 1341 Aladdin and the Flying Carpet Pollard_rho整数分解+DFS
进入a b 多少努力p, q 使p*q == a && p < q && p >= b 直接大整数分解 然后dfs所有可能的解决方案劫持 #include ...
- Miller Rabbin素数测试
步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d% ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- 关于Miller-Rabin与Pollard-Rho算法的理解(素性测试与质因数分解)
前置 费马小定理(即若P为质数,则\(A^P\equiv A \pmod{P}\)). 欧几里得算法(GCD). 快速幂,龟速乘. 素性测试 引入 素性测试是OI中一个十分重要的事,在数学毒瘤题中有着 ...
- POJ 1811 Prime Test 素性测试 分解素因子
题意: 给你一个数n(n <= 2^54),判断n是不是素数,如果是输出Prime,否则输出n最小的素因子 解题思路: 自然数素性测试可以看看Matrix67的 素数与素性测试 素因子分解利用 ...
随机推荐
- 实现html页面只自动跳转一次
function show(){ var value= sessionStorage.getItem("flg"); if(value==null || value==undef ...
- 洛谷P2607 [ZJOI2008]骑士
P2607 [ZJOI2008]骑士 题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一 ...
- Unity---DOTween插件学习(3)---获取数据、协程、路径动画
目录 10.获取数据 11.携程 12.路径动画 本文及系列参考于Andy老师的DOTween系列 欢迎大家关注Andy老师 10.获取数据 类方法 返回所有暂停的动画,没有则返回null var l ...
- idea长用快捷键
1CA(ctrl+alt) 1.1(记忆mlv) ctrl alt m 代码封装成方法 ctrl alt L格式化代码 ctrl alt v补全返回值 (eclipse: alt shift l) 1 ...
- 事务隔离实现并发控制:MySQL系列之十
一.并发访问控制 实现的并发访问的控制技术是基于锁: 锁分为表级锁和行级锁,MyISAM存储引擎不支持行级锁:InnoDB支持表级锁和行级锁: 锁的分类有读锁和写锁,读锁也被称为共享锁,加读锁的时候其 ...
- Java基础笔记(十二)——方法
方法:实现一个功能. 方法声明: 访问修饰符 返回类型 方法名(参数列表){ //方法体 } 访问修饰符:public.private.protect.default 返回类型:void——无返 ...
- Datatable 转换 Dictionary
DataTable dt = new DataTable(); dt.Columns.Add("姓名"); dt.Columns.Add("学号"); dt.R ...
- Luogu P2480 [SDOI2010]古代猪文 卢卡斯+组合+CRT
好吧刚开始以为扩展卢卡斯然后就往上套..结果奇奇怪怪又WA又T...后来才意识到它的因子都是质数...qwq怕不是这就是学知识学傻了.. 题意:$ G^{\Sigma_{d|n} \space C_n ...
- python入门之sys模块、shutil模块
sys模块 import sys sys.version 返回python的版本 sys.argv 返回一个以脚本名,和传入的参数作为元素的列表 sys.path 返回一个以当前代码文件路径,pyth ...
- Windows下搭建QT环境
必须软件 qt-windows-opensource-5.1.1-msvc2010-x86-offline qt-vs-addin-1.2.2-opensource支持vs2008.2010.2012 ...