【BZOJ4804】欧拉心算

Description

给出一个数字N

Input

第一行为一个正整数T,表示数据组数。
接下来T行为询问,每行包含一个正整数N。
T<=5000,N<=10^7

Output

按读入顺序输出答案。

Sample Input

1
10

Sample Output

136

题解

显然,$\varphi$和$\mu$都是积性函数,卷起来肯定也是积性函数,可以线性筛来搞。但是本蒟蒻到这里就卡住了,怎么线性筛啊?于是找题解,发现题解都说很简单。无奈,只好打表找规律了。(一开始表还打错了QAQ)

设$f(i)=\sum\limits_{d|i}\varphi(d)\mu({i\over d})$因为是积性函数,所以若$n=\prod p_i^{e_i}$(pi是质数),那么$f(n)=\prod f(p_i^{e_i})$,所以我们只需要找出每个质数的n次方的f值的规律。发现如下规律:

$f(p^x)=\left\{ \begin{matrix} p-2 & x=1 \\ (p-1)^2  & x=2 \\ (p-1)^2p^{x-2} & x >2\end{matrix}\right.$

然后预处理出f,分块就行了。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int m=10000000;
int n,num;
typedef long long ll;
int pri[1000010];
ll s[m+10];
bool np[m+10];
ll ans;
int main()
{
s[1]=1;
int i,j,last,T;
for(i=2;i<=m;i++)
{
if(!np[i]) pri[++num]=i,s[i]=i-2;
for(j=1;j<=num&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)
{
if((i/pri[j])%pri[j]==0) s[i*pri[j]]=s[i]*pri[j];
else s[i*pri[j]]=s[i/pri[j]]*(pri[j]-1)*(pri[j]-1);
break;
}
s[i*pri[j]]=s[i]*(pri[j]-2);
}
}
for(i=2;i<=m;i++) s[i]+=s[i-1];
scanf("%d",&T);
while(T--)
{
ans=0;
scanf("%d",&n);
for(i=1;i<=n;i=last+1)
{
last=n/(n/i);
ans+=(s[last]-s[i-1])*(n/i)*(n/i);
}
printf("%lld\n",ans);
}
return 0;
}

【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛的更多相关文章

  1. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  2. 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛

    Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...

  3. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  4. 【bzoj2694】Lcm 莫比乌斯反演+线性筛

    题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...

  5. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  6. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  7. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  8. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  9. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

随机推荐

  1. ElasticSearch测试数据

    curl命令数据 curl -XPUT http://127.0.0.1:9200/us/user/1 -d "{\"email\":\"john@smith. ...

  2. CountDownLatch模拟高并发测试代码

    直接上代码进行验证吧 /** * 通过countdownlatch的机制,来实现并发运行 * 模拟200个并发测试 * @author ll * @date 2018年4月18日 下午3:55:59 ...

  3. ES的关键端口

    ElasticSearch的集群可自发现,只要配置相同的集群名称,默认为组播发现机制,默认情况下: http 端口:9200 需要打开给调用 数据传输端口:9300 用于集群之间交换数据 组播端口(U ...

  4. fabricjs 高级篇(自定义类型)

    原文:https://www.sitepoint.com/fabric-js-advanced/ <html> <head> <script src='./js/fabr ...

  5. 使用Fiddler作为简单的mockserver

    转载:  http://blog.csdn.net/xt0916020331/article/details/66544526 开发中经常遇到调试过程中对接系统接口无法联调或者后台未开发完成等情况.这 ...

  6. 在html页面中直接嵌入图片数据

    一般情况,通常是在html页面中应用图片的链接,如: <img src="http://baidu.com/logo.gif">   但是,这样的前提是我们需要将图片先 ...

  7. php中const和static的区别和联系

    1.const是类中的常量,类外用define来定义常量2.const只可以修饰类的属性,不能修饰类的方法,static可以修饰属性,也可以修饰方法3.const和static都属于类本身,而不属于n ...

  8. java编程思想读书笔记 第十二章 通过异常处理错误(下)

    1.异常的限制 当覆盖方法的时候,仅仅能抛出在基类方法的异常说明里列出的那些异常. 这意味着,当基类使用的代码应用到其派生类对象的时候,一样能够工资,异常也不例外. 以下的样例是在编译时施加在异常上面 ...

  9. 正则表达式Pattern ,Matcher

    正则表达式:符合一定规则的表达式 作用:用于专门操作字符串 特点:用于一些特定的符号来表示一些代码的操作,这样就简化代码的书写 学习正则表达式就是要学习一些特殊符号的使用 好处:简化对字符串复杂的操作 ...

  10. BZOJ 1012 线段树||单调队列

    非常裸的线段树  || 单调队列: 假设一个节点在队列中既没有时间优势(早点入队)也没有值优势(值更大),那么显然不管在如何的情况下都不会被选为最大值. 既然它仅仅在末尾选.那么自然能够满足以上的条件 ...