uva 1614奇怪的股市(归纳法证明,贪心)

输入一个长度为n的序列a,满足\(1\le a_i\le i\),要求确定每个数的正负号,使得所有数的总和为0.例如a={1, 2, 3, 4},则4个数的符号分别是1, -1, -1, 1即可。但若a={1, 2, 3, 3},则无解。n<=1e5。

这道题相当于要找到两堆相等的数。若序列中数的总和为奇数,那么拆出来的两堆数无论如何都不可能相等,所以无解。由于这道题的特殊性质,可用归纳法证明总和为偶数时一定有解。

现在要证明,用前i个数的全部或部分可以凑出0到sum[i]的所有整数。n=1时这是成立的。假设n=k之前所有项都成立,那么\(sum[k+1]=sum[k]+a[k+1]\)。只需证明能凑出\(sum[k]+1\)到\(sum[k]+a[k+1]\)的所有整数即可。由于\(1\le a_[k+1]\le k+1\),而\(sum[k]\ge k\),所以\(sum[k]+p=x+a[k+1]\ (1\le p\le a[k+1],0\le x\le sum[k])\)恒成立。

这样一来,就证明了用前n个数,可以凑出sum[n]/2。当sum[n]是偶数时,另一半也就是sum[n]/2。现在的问题就是找出和等于sum[n]/2的数。直接将a数组从大到小排序,然后贪心的取即可。

为什么贪心的取是正确的呢?因为\(1\le a_i\le i\),排序完的数组必定也满足这个条件。所以只要贪心的取显然有解。

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=1e5+5;
struct node{
int data, id;
}a[maxn];
int n, chose[maxn];
long long sum; bool cmp1(node &x, node &y){
return x.data>y.data; } //100万才需要读优
int main(){
while (~scanf("%d", &n)){
sum=0;
for (int i=0; i<n; ++i){
scanf("%d", &a[i].data);
sum+=a[i].data; a[i].id=i;
}
if (sum&1){
puts("No"); continue; }
else sum>>=1;
sort(a, a+n, cmp1);
for (int i=0; i<n; ++i)
if (a[i].data<=sum){
sum-=a[i].data;
chose[a[i].id]=1;
} else chose[a[i].id]=-1;
puts("Yes");
for (int i=0; i<n; ++i)
printf("%d ", chose[i]);
puts("");
}
return 0;
}

uva 1614奇怪的股市(归纳法证明,贪心)的更多相关文章

  1. UVa 1614 奇怪的股市

    https://vjudge.net/problem/UVA-1614 题意:输入一个长度为n的序列a,满足1<=ai<=i,要求确定每个数的正负号,使得所有数的总和为0. 思路:贪心部分 ...

  2. UVA - 1614 Hell on the Markets(奇怪的股市)(贪心)

    题意:输入一个长度为n(n<=100000)的序列a,满足1<=ai<=i,要求确定每个数的正负号,使得所有数的总和为0. 分析: 1.若总和为0,则未加符号之前,所有数之和必为偶数 ...

  3. UVA - 1614 Hell on the Market(贪心)

    Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Descript ...

  4. UVA 1614 - Hell on the Markets 奇怪的股市(贪心,结论)

    先证明一个结论吧,对于1≤ai≤i+1,前面ai个数一定可以凑出1~sum[i]中的任意一个数. 对于i=1显然成立, 假设对于i=k结论成立,那么对于i=k+1来说,只要证明sum[k]+i,1≤i ...

  5. UVa 1614 Hell on the Markets (贪心+推理)

    题意:给定一个长度为 n 的序列,满足 1 <= ai <= i,要求确实每一个的符号,使得它们和为0. 析:首先这一个贪心的题目,再首先不是我想出来的,是我猜的,但并不知道为什么,然后在 ...

  6. 【uva 1614】Hell on the Markets(算法效率--贪心)

    题意:有一个长度为N的序列A,满足1≤Ai≤i,每个数的正负号不知.请输出一种正负号的情况,使得所有数的和为0.(N≤100000) 解法:(我本来只想静静地继续做一个口胡选手...←_← 但是因为这 ...

  7. 紫书 习题8-10 UVa 1614 (贪心+结论)

    这道题我苦思冥想了一个小时, 想用背包来揍sum/2, 然后发现数据太大, 空间存不下. 然后我最后还是去看了别人的博客, 发现竟然有个神奇的结论-- 幸好我没再钻研, 感觉这个结论我肯定是想不到的- ...

  8. 【习题 8-10 UVA - 1614】Hell on the Markets

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 证明:前i个数一定能凑够1..sum[i]中的所有数字 i=1时显然成立. 现在假设i>=2时结论成立 即前i个数字能凑出1. ...

  9. bzoj 4004 [JLOI2015]装备购买——拟阵证明贪心+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 看Zinn博客水过去…… 运用拟阵可以证明按价格从小到大买的贪心是正确的.但自己还不会 ...

随机推荐

  1. 分享知识-快乐自己:解决 Maven 无法下载 fastdfs-client-java 依赖。

    因为fastdfs-client-java-1.27-SNAPSHOT.jar这个依赖包在maven中央仓库是没有的. 需要自己编译源码成jar本地安装到maven 的本地仓库,安装完以后就能正常引用 ...

  2. C++(十)— 字符串进行插入、替换、查找、删除操作、substr

     1.C++中对字符串进行插入.替换.删除操作 #include<iostream> #include<algorithm> #include<stdio.h> # ...

  3. 1W字看懂互联网知识经济

    互联网知识经济,发生关键变化的不是知识,而是经济. 今天和大家分享方军老师的新书<付费:互联网知识经济的兴起>.这本书是一个老互联网人看新知识经济,很有意思的视角在于,以互联网的发展为节点 ...

  4. JS判断2个时间是否在同一周

    function isSameWeek(old, now) { var oneDayTime = 1000 * 60 * 60 * 24; var old_count = parseInt(+old ...

  5. Linux CentOS 6.5 64位 静默安装Oracle11g 云主机

    本例: 通过SSH远程连接云主机,上传oracle11g安装包,在centos6.5上无图形化界面静默安装oracle11g. 涉及工具及环境: 1.本地环境windows7+ssh远程连接工具xSh ...

  6. 使用TortoiseGit来访问GitHub

    因为以前一直在用TSVN, 对其界面操作比较熟悉. 因此,决定不用Git Gui而是用TortoiseGit来访问GitHub. 安装TortoiseGit成功后, 1.运行PuTTY Key Gen ...

  7. lvs+keepalived和haproxy+heartbeat区别

    最近一直在看一些高可用性的负载均衡方案,当然那些f5之类的硬件设备是玩不起也接触不到了.只能看这些for free的开源方案. 目前使用比较多的就是标题中提到的这两者,其实lvs和haproxy都是实 ...

  8. Linux如何打开执行脚本

    命令行下例如要打开startmysql.sh就直接 sh /目录/目录当前界面下就简单了在这个SH文件目录下打开终端 输入 sh startmysql.sh 回车或者对这个文件右键 打开 选择“在终端 ...

  9. 电脑当路由使用(目前只在win7上用过)

    前提:电脑有无线网卡,并打开了无线 第一步使用管理员权限运行cmd.exe 1.执行如下命令 netsh wlan set hostednetwork mode=allow ssid=myWifi k ...

  10. AVI编码器

    AVI编码器,AVI英文全称为Audio Video Interleaved,即音频视频交错格式.就是编码语音和影像同步组合在一起的文件格式.它对视频文件采用了一种有损压缩方式,但压缩比较高,因此尽管 ...