loj#6435. 「PKUSC2018」星际穿越(倍增)
题面
题解
我们先想想,在这个很特殊的图里该怎么走最短路
先设几个量,\(a_i\)表示\([a_i,i-1]\)之间的点都和\(i\)有边(即题中的\(l_i\)),\(l\)表示当前在计算从\(i\)到\([l,i]\)中的所有点的步数总和。那么答案就是\([l,i]-[r+1,i]\)
因为\(a_i\)表示\([a_i,i-1]\)之间的点都和\(i\)有边,那么如果从\(i\)出发,对于所有这个区间中的点,肯定是直接一步跳过去最优。证明显然
记\(mn_i\)表示\(i\)以及它右边所有的点中能跳到的最左边的点,对于所有\([mn_{a_i},a_i-1]\)中的点,肯定能够两步跳到
证明:如果\(mn_{a_i}\)是由\([a_i,i-1]\)中的点跳到的,那么第一步从\(i\)跳到那个点,第二步跳过去。如果是由\(i\)右边的点跳到的,那么从\(i\)第一步跳到右边那个点,再跳过去即可
同理,记\(x=mn_{a_i}\),所有\([mn_x,x-1]\)之间的点都能\(3\)步跳到,\(y=mn_x\),则\([mn_y,y-1]\)之间的点都能\(4\)步跳到……
我们把询问变成从\(i\)向左的两个区间相减的形式。那么从\(i\)出发,我们可以把左边的点分为若干段,每一段都有相同的最短步数
然而有可能\(a_i=i-1\),即每一次都只能往左跳一步,上面的方法就\(gg\)了
让我们看看我们上面是怎么数总步数的……\([a_i,i-1]\)乘个\(1\),\([mn_{a_i},a_i-1]\)乘个\(2\),\([mn_x,x-1]\)乘个\(3\)……
我们似乎可以换一个数法,先加上\([1,i-1]\),再加上\([1,a_i-1]\),再加上\([1,x-1]\)……
那么这样数出来的答案只要记录一下一共数了\(t\)次,最后减去\(t\times (l-1)\)就是正确答案了!
所以你这转化好像没啥子用啊……跳的次数还是没变啊……
然而我们可以倍增啊!记录一个倍增数组表示跳\(i\)步之后会到哪里,以及跳的这几步里的\(i-1\)的总和
然后就没有然后了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R ll x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
const int N=3e5+5,L=21;
inline ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
int to[N][L],mn[N],a[N],st[N];ll sum[N][L];
int n,top,l,r,x,m;ll p,q,d;
ll calc(int x,int y){
ll res=0;int las=0,now,t=0;
if(y>=a[x])return x-y;
las=a[x],res=x-1;
fd(j,19,0)if(to[las][j]>y)t|=(1<<j),res+=sum[las][j],las=to[las][j];
t+=2,res+=las-1,res-=1ll*(y-1)*t;
return res;
}
void init(){
fp(i,1,n)to[i][0]=mn[i],sum[i][0]=i-1;
for(R int j=1;j<=19;++j)fp(i,1,n){
to[i][j]=to[to[i][j-1]][j-1];
sum[i][j]=sum[i][j-1]+sum[to[i][j-1]][j-1];
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();
fp(i,2,n)mn[i]=a[i]=read();
fd(i,n-1,1)cmin(mn[i],mn[i+1]);
init();
m=read();
while(m--){
l=read(),r=read(),x=read();
p=calc(x,l)-calc(x,r+1);
q=r-l+1;
d=gcd(p,q),p/=d,q/=d;
print(p),sr[K]='/',print(q);
}
return Ot(),0;
}
loj#6435. 「PKUSC2018」星际穿越(倍增)的更多相关文章
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- LOJ 6435 「PKUSC2018」星际穿越——DP+倍增 / 思路+主席树
题目:https://loj.ac/problem/6435 题解:https://www.cnblogs.com/HocRiser/p/9166459.html 自己要怎样才能想到怎么做呢…… dp ...
- 【LOJ】#6435. 「PKUSC2018」星际穿越
题解 想出70的大众分之后就弃疗了,正解有点神仙 就是首先有个比较显然的结论,就是要么是一直往左走,要么是走一步右边,然后一直往左走 根据这个可以结合RMQ写个70分的暴力 我们就考虑,最优的话显然是 ...
- #6435. 「PKUSC2018」星际穿越
考场上写出了70分,现在填个坑 比较好写的70分是这样的:(我考场上写的贼复杂) 设\(L(i)=\min_{j=i}^nl(j)\) 那么从i开始向左走第一步能到达的就是\([l(i),i-1]\) ...
- 「PKUSC2018」星际穿越 (70分做法)
5371: [Pkusc2018]星际穿越 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 27 Solved: 11[Submit][Status] ...
- 「PKUSC2018」星际穿越(倍增)
倍增好题啊! 我们我们预处理 \(f[x][i]\) 表示 \(x\) 点最左到达的端点,\(sum[x][i]\) 表示 \(x\) 点最左到达的端点时 \(f[x][i]\sim x\) 的答案, ...
- 「PKUSC2018」星际穿越
传送门 Solution 倍增 Code #include <bits/stdc++.h> #define reg register #define ll long long usin ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...
随机推荐
- PostgreSQL 监控磁盘使用
监控磁盘使用 1. 判断磁盘用量 每个表都有一个主要的堆磁盘文件,大多数数据都存储在其中.如果一个表有着可能会很宽(尺寸大)的列, 则另外还有一个TOAST文件与这个表相关联, 它用于存储因为太宽而不 ...
- Java学习之系统高可用性渲染接口日志自动服务降级
背景:公司都追求系统的高可用性,这里不可用时间就是其中很重要的一个指标,为此在做系统功能升级迭代的过程中如何快速处理异常恢复正常功能极为重要.现在对新增模块的要求是都增加开关,方便快速关闭异常模块,但 ...
- mybatis 动态sql语句(1)
mybatis 的动态sql语句是基于OGNL表达式的.可以方便的在 sql 语句中实现某些逻辑. 总体说来mybatis 动态SQL 语句主要有以下几类: 1. if 语句 (简单的条件判断) 2. ...
- 有关Backgroundworker
(一)Backgroundworker取消时应该用的有关代码: CancelAsync方法是在前台主线程用的,CancellationPending属性是在后台子线程用的.实际的使用方式应该是这样的: ...
- hibernate 延长加载范围
1. 关闭延迟加载功能 lazy="false"2.修改抓取策略 fetch="join"直接查询关联数据,一个联接查询搞定3.使用Hibernate对象的in ...
- 第九章 Java中线程池
Java中的线程池是运用场景最多的并发框架,几乎所有需求异步或并发执行任务的程序都可以使用线程池.在开发过程中,合理地使用线程池能够带来3个好处. 降低资源消耗:通过重复利用已创建的线程降低线程创建和 ...
- Linux 正文处理命令及tar vi 编辑器 homework
作业一: 1) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) cat /etc/passwd /etc/group >/1.txt 2) 将用户信息数据库文件和用 ...
- VxVM vxsnap ERROR V-5-1-0 Volume cannot be linked due to size/regionsize incompatibility
在做vxsnap addmir时报错如下: #> vxsnap -g OLS_DATA_DG -b addmir OLS_DATA_ACC_P mirvol=OLS_DATA_ACC_SM1 V ...
- MSSQL 数据库日志爆涨
解决方法有两种,现只用最简单的方法: 1.数据库属性----选项----恢复模式由完整改为简单--确定 2.右击数据库---任务---收缩 3.数据库属性----选项----恢复模式由简单改为完整-- ...
- Android禁止程序自动旋转的配置
在想要禁止的Activity中加入 android:screenOrientation="portrait" 属性,其中,portrait是竖屏,landscape是横屏