回文后缀(suffix)
回文后缀(suffix)
题目描述
给定字符集大小 SS ,问有多少个长度为 NN 的字符串不存在长度 >1>1 的回文后缀。
答案对 MM 取模。
输入格式
第一行两个正整数 n, kn,k,表示树的点数和特殊点的数量。kk 为偶数。
接下来 n − 1n−1 行每行三个正整数 a, b, ca,b,c,表示 aa 和 bb 两点之间有一条边权为 cc 的无向边。
接下来一行 kk 个互不相同的 [1, n][1,n] 的正整数,为 kk 个特殊点的编号。
输入格式
一行三个数,分别为N, S, MN,S,M。
输出格式
一个数表示答案。
solution
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define maxn 10000007
using namespace std;
int n;
ll S,mod,f[maxn],g[maxn];
int main()
{
cin>>n>>S>>mod;
f[]=g[]=S;
for(int i=;i<=n;i++){
g[i]=(S*g[i-])%mod-f[i-];
g[i]%=mod;
f[i]=g[(i/)+];
}
g[n]=(g[n]%mod+mod)%mod;
cout<<g[n]<<endl;
return ;
}
回文后缀(suffix)的更多相关文章
- Palindrome Partition CodeForces - 932G 回文树+DP+(回文后缀的等差性质)
题意: 给出一个长度为偶数的字符串S,要求把S分成k部分,其中k为任意偶数,设为a[1..k],且满足对于任意的i,有a[i]=a[k-i+1].问划分的方案数. n<=1000000 题解: ...
- 【2019 1月集训 Day1】回文的后缀
题意: 给定 n,s,求有多少个字符集大小为 s ,长度为 n 的字符串,使得其不存在一个长度大于 1 的回文后缀. 答案对 m 取模. 分析: 考场见到计数题的链式反应,想写暴力—>暴力难写— ...
- 【CF17E】Palisection(回文树)
[CF17E]Palisection(回文树) 题面 洛谷 题解 题意: 求有重叠部分的回文子串对的数量 所谓正难则反 求出所有不重叠的即可 求出以一个位置结束的回文串的数量 和以一个位置为开始的回文 ...
- 【CF932G】Palindrome Partition(回文树,动态规划)
[CF932G]Palindrome Partition(回文树,动态规划) 题面 CF 翻译: 给定一个串,把串分为偶数段 假设分为了\(s1,s2,s3....sk\) 求,满足\(s_1=s_k ...
- 【BZOJ2342】双倍回文(回文树)
[BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...
- 【BZOJ2565】最长双回文串(回文树)
[BZOJ2565]最长双回文串(回文树) 题面 BZOJ 题解 枚举断点\(i\) 显然的,我们要求的就是以\(i\)结尾的最长回文后缀的长度 再加上以\(i+1\)开头的最长回文前缀的长度 至于最 ...
- 【洛谷P3649】回文串
题目大意:给定一个长度为 N 的字符串,定义一个变量为该字符串的回文子串长度乘以该字串出现的次数,求这个变量的最大值是多少. 题解:学会了回文自动机. 回文自动机是两棵树组成的森林结构,并通过 fai ...
- 回文自动机(PAM) 学习笔记
原文链接www.cnblogs.com/zhouzhendong/p/PAM.html 前置知识 无. (强行说和KMP有关也是可以的……) 关于回文串的一些性质 1. 一个长度为 n 的字符串最多有 ...
- [模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串
回文树/回文自动机 放链接: 回文树或者回文自动机,及相关例题 - F.W.Nietzsche - 博客园 状态数的线性证明 并没有看懂上面的证明,所以自己脑补了一个... 引理: 每一个回文串都是字 ...
随机推荐
- 返回固定数据的web服务器
import socket def handle_client(socket_con): """ 接收来自客户端的请求,并接收请求报文,解析,返回 "" ...
- spring开篇
本文引用http://www.cnblogs.com/ityouknow/p/5292559.html spring简介: spring是一个开源框架,spring是于2003 年兴起的一个轻量级的J ...
- PHP成随机字符串
生成随机字符串 /** * 随机字符串 * @param int $len * @return string */ function randomStr($len = 32) { $chars = & ...
- select值改变
改变select的值,然后执行一个方法.可以用chang: $("#select").change(function(){ //要执行的内容 });
- 43_2.VUE学习之--不使用组件computed计算属性超简单的实现美团购物车原理
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 如何在nlp问题中定义自己的数据集
我之前大致写了一篇在pytorch中如何自己定义数据集合,在这里如何自定义数据集 不过这个例子使用的是image,也就是图像.如果我们用到的是文本呢,处理的是NLP问题呢? 在解决这个问题的时候,我在 ...
- Gold Balanced Lineup POJ - 3274
Description Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been abl ...
- urllib使用一
urllib.urlopen()方法: 参数: 1.url(要访问的网页链接http:或者是本地文件file:) 2.data(如果有,就会由GET方法变为POST方法,提交的数据格式必须是appli ...
- 1,版本控制git--仓库管理
再开始这个话题之前,让我想起了一件很痛苦的事情,在我大学写毕业论文的时候,我当时的文件是这样保存的 毕业论文_初稿.doc 毕业论文_修改1.doc 毕业论文_修改2.doc 毕业论文_修改3.d ...
- 4,远程连接Linux
为什么要远程连接Linux 在实际的工作场景中,虚拟机界面或者物理服务器本地的终端都是很少接触的,因为服务器装完系统之后,都要拉倒IDC机房托管,如果是购买的云主机,那更碰不到服务器本体了,只能通过远 ...