回文后缀(suffix)

题目描述

给定字符集大小 SS ,问有多少个长度为 NN 的字符串不存在长度 >1>1 的回文后缀。

答案对 MM 取模。

输入格式

第一行两个正整数 n, kn,k,表示树的点数和特殊点的数量。kk 为偶数。

接下来 n − 1n−1 行每行三个正整数 a, b, ca,b,c,表示 aa 和 bb 两点之间有一条边权为 cc 的无向边。

接下来一行 kk 个互不相同的 [1, n][1,n] 的正整数,为 kk 个特殊点的编号。

输入格式

一行三个数,分别为N, S, MN,S,M。

输出格式

一个数表示答案。

 

solution
考虑从后往前加数。
令g[i]表示后i位符合要求的串个数。
考虑从gi-1转移到gi,我们用随便放的方案减去不合法的。
而不合法的只可能是i~n为回文串
那么取f[i]=g[1+i/2],i/2即为回文串一半
g[i]=S*g[i-1]-f[i-1] 即可。
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define maxn 10000007
using namespace std;
int n;
ll S,mod,f[maxn],g[maxn];
int main()
{
cin>>n>>S>>mod;
f[]=g[]=S;
for(int i=;i<=n;i++){
g[i]=(S*g[i-])%mod-f[i-];
g[i]%=mod;
f[i]=g[(i/)+];
}
g[n]=(g[n]%mod+mod)%mod;
cout<<g[n]<<endl;
return ;
}

回文后缀(suffix)的更多相关文章

  1. Palindrome Partition CodeForces - 932G 回文树+DP+(回文后缀的等差性质)

    题意: 给出一个长度为偶数的字符串S,要求把S分成k部分,其中k为任意偶数,设为a[1..k],且满足对于任意的i,有a[i]=a[k-i+1].问划分的方案数. n<=1000000 题解: ...

  2. 【2019 1月集训 Day1】回文的后缀

    题意: 给定 n,s,求有多少个字符集大小为 s ,长度为 n 的字符串,使得其不存在一个长度大于 1 的回文后缀. 答案对 m 取模. 分析: 考场见到计数题的链式反应,想写暴力—>暴力难写— ...

  3. 【CF17E】Palisection(回文树)

    [CF17E]Palisection(回文树) 题面 洛谷 题解 题意: 求有重叠部分的回文子串对的数量 所谓正难则反 求出所有不重叠的即可 求出以一个位置结束的回文串的数量 和以一个位置为开始的回文 ...

  4. 【CF932G】Palindrome Partition(回文树,动态规划)

    [CF932G]Palindrome Partition(回文树,动态规划) 题面 CF 翻译: 给定一个串,把串分为偶数段 假设分为了\(s1,s2,s3....sk\) 求,满足\(s_1=s_k ...

  5. 【BZOJ2342】双倍回文(回文树)

    [BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...

  6. 【BZOJ2565】最长双回文串(回文树)

    [BZOJ2565]最长双回文串(回文树) 题面 BZOJ 题解 枚举断点\(i\) 显然的,我们要求的就是以\(i\)结尾的最长回文后缀的长度 再加上以\(i+1\)开头的最长回文前缀的长度 至于最 ...

  7. 【洛谷P3649】回文串

    题目大意:给定一个长度为 N 的字符串,定义一个变量为该字符串的回文子串长度乘以该字串出现的次数,求这个变量的最大值是多少. 题解:学会了回文自动机. 回文自动机是两棵树组成的森林结构,并通过 fai ...

  8. 回文自动机(PAM) 学习笔记

    原文链接www.cnblogs.com/zhouzhendong/p/PAM.html 前置知识 无. (强行说和KMP有关也是可以的……) 关于回文串的一些性质 1. 一个长度为 n 的字符串最多有 ...

  9. [模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串

    回文树/回文自动机 放链接: 回文树或者回文自动机,及相关例题 - F.W.Nietzsche - 博客园 状态数的线性证明 并没有看懂上面的证明,所以自己脑补了一个... 引理: 每一个回文串都是字 ...

随机推荐

  1. 基于Ceph分布式集群实现docker跨主机共享数据卷

    上篇文章介绍了如何使用docker部署Ceph分布式存储集群,本篇在此基础之上,介绍如何基于Ceph分布式存储集群实现docker跨主机共享数据卷. 1.环境准备 在原来的环境基础之上,新增一台cen ...

  2. 简版会员私信表设计及sql 私信列表查询

    先上下表结构和数据 DROP TABLE IF EXISTS `message`; CREATE TABLE `message` ( `id` int(11) NOT NULL AUTO_INCREM ...

  3. 生产者消费者-Java代码实现

    import java.util.LinkedList; class Storage{ private static final int MAX = 100; LinkedList<Object ...

  4. 【转载】最长回文字符串(manacher算法)

    原文转载自:http://blog.csdn.net/lsjseu/article/details/9990539 偶然看见了人家的博客发现这么一个问题,研究了一下午, 才发现其中的奥妙.Stupid ...

  5. python__高级 : Property 的使用

    一个类中,假如一个私有属性,有两个方法,一个是getNum , 一个是setNum 它,那么可以用 Property 来使这两个方法结合一下,比如这样用  num = property(getNum, ...

  6. TP5 行为Behavior用法说明

    TP5 行为Behavior用法说明 无论是tp3还是在tp5中,行为都是一个非常重要的概念,关于太多的理论知识,就不多说了,不了解的请查看开发文档:TP5 行为概述 以下,就由代码来一步一步实现行为 ...

  7. Unexpected exception parsing XML document from ServletContext resource [/WEB-INF/config/springdemo-config.xml]

    org.springframework.beans.factory.BeanDefinitionStoreException: Unexpected exception parsing XML doc ...

  8. http虚拟主机的简单配置训练

    http的虚拟主机 对于某些web访问站点而言,每天的访问量很少,因此真正的放一台服务器去进行web站点是很 浪费资源的,因此我们选择了虚拟主机 web处理模块的分类(MPM) 1.perfork 一 ...

  9. windows禁用/启用hyper-V,解决hyper-V与模拟器同时启用时造成冲突

  10. P3819 松江1843路(洛谷月赛)

    P3819 松江1843路 题目描述 涞坊路是一条长L米的道路,道路上的坐标范围从0到L,路上有N座房子,第i座房子建在坐标为x[i]的地方,其中住了r[i]人. 松江1843路公交车要在这条路上建一 ...