回文后缀(suffix)

题目描述

给定字符集大小 SS ,问有多少个长度为 NN 的字符串不存在长度 >1>1 的回文后缀。

答案对 MM 取模。

输入格式

第一行两个正整数 n, kn,k,表示树的点数和特殊点的数量。kk 为偶数。

接下来 n − 1n−1 行每行三个正整数 a, b, ca,b,c,表示 aa 和 bb 两点之间有一条边权为 cc 的无向边。

接下来一行 kk 个互不相同的 [1, n][1,n] 的正整数,为 kk 个特殊点的编号。

输入格式

一行三个数,分别为N, S, MN,S,M。

输出格式

一个数表示答案。

 

solution
考虑从后往前加数。
令g[i]表示后i位符合要求的串个数。
考虑从gi-1转移到gi,我们用随便放的方案减去不合法的。
而不合法的只可能是i~n为回文串
那么取f[i]=g[1+i/2],i/2即为回文串一半
g[i]=S*g[i-1]-f[i-1] 即可。
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
#define maxn 10000007
using namespace std;
int n;
ll S,mod,f[maxn],g[maxn];
int main()
{
cin>>n>>S>>mod;
f[]=g[]=S;
for(int i=;i<=n;i++){
g[i]=(S*g[i-])%mod-f[i-];
g[i]%=mod;
f[i]=g[(i/)+];
}
g[n]=(g[n]%mod+mod)%mod;
cout<<g[n]<<endl;
return ;
}

回文后缀(suffix)的更多相关文章

  1. Palindrome Partition CodeForces - 932G 回文树+DP+(回文后缀的等差性质)

    题意: 给出一个长度为偶数的字符串S,要求把S分成k部分,其中k为任意偶数,设为a[1..k],且满足对于任意的i,有a[i]=a[k-i+1].问划分的方案数. n<=1000000 题解: ...

  2. 【2019 1月集训 Day1】回文的后缀

    题意: 给定 n,s,求有多少个字符集大小为 s ,长度为 n 的字符串,使得其不存在一个长度大于 1 的回文后缀. 答案对 m 取模. 分析: 考场见到计数题的链式反应,想写暴力—>暴力难写— ...

  3. 【CF17E】Palisection(回文树)

    [CF17E]Palisection(回文树) 题面 洛谷 题解 题意: 求有重叠部分的回文子串对的数量 所谓正难则反 求出所有不重叠的即可 求出以一个位置结束的回文串的数量 和以一个位置为开始的回文 ...

  4. 【CF932G】Palindrome Partition(回文树,动态规划)

    [CF932G]Palindrome Partition(回文树,动态规划) 题面 CF 翻译: 给定一个串,把串分为偶数段 假设分为了\(s1,s2,s3....sk\) 求,满足\(s_1=s_k ...

  5. 【BZOJ2342】双倍回文(回文树)

    [BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...

  6. 【BZOJ2565】最长双回文串(回文树)

    [BZOJ2565]最长双回文串(回文树) 题面 BZOJ 题解 枚举断点\(i\) 显然的,我们要求的就是以\(i\)结尾的最长回文后缀的长度 再加上以\(i+1\)开头的最长回文前缀的长度 至于最 ...

  7. 【洛谷P3649】回文串

    题目大意:给定一个长度为 N 的字符串,定义一个变量为该字符串的回文子串长度乘以该字串出现的次数,求这个变量的最大值是多少. 题解:学会了回文自动机. 回文自动机是两棵树组成的森林结构,并通过 fai ...

  8. 回文自动机(PAM) 学习笔记

    原文链接www.cnblogs.com/zhouzhendong/p/PAM.html 前置知识 无. (强行说和KMP有关也是可以的……) 关于回文串的一些性质 1. 一个长度为 n 的字符串最多有 ...

  9. [模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串

    回文树/回文自动机 放链接: 回文树或者回文自动机,及相关例题 - F.W.Nietzsche - 博客园 状态数的线性证明 并没有看懂上面的证明,所以自己脑补了一个... 引理: 每一个回文串都是字 ...

随机推荐

  1. 【杂题总汇】HDU-6406 Taotao Picks Apples

    [HDU 6406]Taotao Picks Apples 多校赛的时候多写了一行代码就WA了……找了正解对拍,在比赛结束后17分钟AC了

  2. idea中使用逆向工程----三部曲

    逆向工程小伙伴可能都知道,可以根据公司大佬的数据库简单创建实体类和dao接口以及mapper的映射文件,逆向工程可能在数据库字段比较少的时候体现不会方便,但是当参与到数据库字段比较多的时候,我们不可能 ...

  3. Linux中的代码编辑器vim

    Vim的三种工作模式 命令行模式 插入模式 底行模式 Vim 的命令行模式 命令行模式是进入vim后的初始模式,在该模式下主要是使用方向键来移动光标的位置,并通过相应的命令来进行文字的编辑. 切换方法 ...

  4. bin/postconf: error while loading shared libraries: libmysqlclient

    今天在编译安装postfix的时候 make install 出现如下错误 bin/postconf: error while loading shared libraries: libmysqlcl ...

  5. Educational Codeforces Round 43 E. Well played!(贪心)

    E. Well played! time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  6. 17-比赛1 B - 子串计算 Chef and his string challenge (string的运用)

    Chef's best friend Jerry gives Chef a string A and wants to know the number of string A that can be ...

  7. idea中用maven打包spring的java项目(非web)

    之前一直用安装的maven打包spring的javaweb项目,用的是mvn assembly:assembly打包,这次打包非web的spring项目,遇到许多问题,特记录一下正确步骤. 1.配置p ...

  8. luoguP1726 上白泽慧音

    P1726 上白泽慧音 题目描述 在幻想乡,上白泽慧音是以知识渊博闻名的老师.春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄.因此慧音决定换一个能够聚集最多人数的村 ...

  9. 亲手搭建一个基于Asp.Net WebApi的项目基础框架2

    本篇目的:封装一些抽象类 1::封装日志相关类 2:封装一个Service操作类 3:封装缓存操作类 4:封装其他一些常用Helper 1.1在Framework项目里面建立好相关操作类文件夹,以便于 ...

  10. DOM事件里封装方法eventUtil

    var eventUtil={ //添加句柄 addHandler:function (element,type,handler) { //element相当于btn2,type此时用的是click类 ...