题目大意:给你一张$n$个点$m$条边的无向图,求一条$1->n$的路径,使得经过路径值的异或值最大(重复经过重复计算)

题解:某条路$k$被重复走了两次,那么它的权值对答案的贡献就是$0$,但是通过这条路径$k$,可以到达它连接的另一个点。

可以将路径拆成两部分,一部分是环,另一部分是链。假设我们选择了一条从$1->n$的链,然后可以选择一些环来增广这条链。可以枚举所有环,将环上异或和扔进线性基,然后用任意一条$1->n$的链作为初值,求线性基与这条链的最大异或和。

卡点:

C++ Code:

#include <cstdio>
#define maxn 50010
#define maxm 100010
int head[maxn], cnt;
struct Edge {
int to, nxt;
long long w;
} e[maxm << 1];
void addE(int a, int b, long long c) {
e[++cnt] = (Edge) {b, head[a], c}; head[a] = cnt;
} long long p[64];
inline void add(long long x) {
for (int i = 62; ~i; i--) if (x & 1ll << i) {
if (p[i]) x ^= p[i];
else {p[i] = x; break;}
}
}
inline long long ask(long long x) {
long long ans = x;
for (int i = 62; ~i; i--) if (ans < (ans ^ p[i])) ans = ans ^ p[i];
return ans;
} long long d[maxn];
bool vis[maxn];
void dfs(int rt, long long now) {
d[rt] = now;
vis[rt] = true;
for (int i = head[rt]; i; i = e[i].nxt) {
int v = e[i].to;
if (!vis[v]) dfs(v, d[rt] ^ e[i].w);
else add(d[rt] ^ d[v] ^ e[i].w);
}
}
int n, m;
int main() {
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i++) {
int a, b;
long long c;
scanf("%d%d%lld", &a, &b, &c);
addE(a, b, c);
addE(b, a, c);
}
dfs(1, 0);
printf("%lld\n", ask(d[n]));
return 0;
}

  

[洛谷P4151][WC2011]最大XOR和路径的更多相关文章

  1. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  2. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  3. 洛谷P4151 [WC2011]最大XOR和路径(线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 首先看到异或就想到线性基 我们考虑有一条路径,那么从这条路径走到图中的任意一个环再走回这条路径上,对答案的贡献是这个环的异或和,走到这个环上的路径对 ...

  4. P4151 [WC2011]最大XOR和路径

    P4151 [WC2011]最大XOR和路径 一道妙极了的题. 首先直接从1走到n 然后现在图上有很多环 所以可以在走到n之后走到环上一个点,再走一遍环,再原路返回.这样就会xor上环的权值. 然后只 ...

  5. [bzoj2115] [洛谷P4151] [Wc2011] Xor

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  6. 【线性基/神仙题】P4151 [WC2011]最大XOR和路径

    Description 给定一个无向连通图,边有边权,求一个 \(1~\sim n\) 的路径,最大化边权的异或和.如果一条边经过多次则计算多次. Input 第一行是两个整数 \(n,m\) 代表点 ...

  7. 洛谷 [P4151] 最大异或和路径

    线性基 首先我们发现,对于一条路径走过去再走回来是没有意义的, 所以我们可以没有任何其他影响的取得一个环的异或和 所以我们预处理出来所有环的异或和,求出他们的线性基,然后任找一条 \(1 \sim n ...

  8. P4151 [WC2011]最大XOR和路径 线性基

    题目传送门 题意:给出一幅无向图,求1到n的所有路径中最大异或和,一条边可以被重复经过. 思路: 参考了大佬的博客 #pragma GCC optimize (2) #pragma G++ optim ...

  9. [WC2011]最大XOR和路径(线性基)

    P4151 [WC2011]最大XOR和路径 题目描述 XOR(异或)是一种二元逻辑运算,其运算结果当且仅当两个输入的布尔值不相等时才为真,否则为假. XOR 运算的真值表如下( 1 表示真, 0 表 ...

随机推荐

  1. GUI测试问题汇总

    1.ajax实现的页面元素定位问题 最近在做项目的时候遇到一个问题,通过xpath定位到元素后做一个循环操作,第一循环可以正常执行,第二次循环后就报错,错误信息:Message: The elemen ...

  2. JS提示Cannot read property 'replace' of undefined

    出现这个错误的原因一般是传的参数为null 在传参之前加个是否为null的判断就行了.

  3. exa命令详解

    exa 是 ls 文件列表命令现代化替代品. 官网:https://the.exa.website/ GitHub:https://github.com/ogham/exa 后续整理中……

  4. html之table&select不为人知的操作

    table标签和其它标签不一样,他有属性和方法! table属性: rows      可以得到table的row集合 cells      得到table所有单元格 table方法: insertR ...

  5. PHP Socket服务器搭建和测试

    1.socket服务器搭建思路 1) 目的:理解socket服务器工作机制 2) 思路:创建socket -> 把socket加入连接池 -> 处理接收信息 -> 握手动作 -> ...

  6. java的有用基础知识(2013-05-02-bd 写的日志迁移

    JDK 是整个Java的核心,包括了Java运行环境.Java工具和Java基础类库.是java开发工具包 jre是java的运行环境(如果不做开发就不用安装jdk单独安装jre就可以运行java程序 ...

  7. 微信小程序禁止下拉_解决小程序下拉出现空白的情况

    微信小程序禁止下拉 在微信小程序中,用力往下拉动,页面顶部会出现一段空白的地方. 产品的需求不太允许这么做,会影响用户体验,查看文档发现可以使用enablePullDownRefresh这属性来实现, ...

  8. hive连接MySQL报错

    错误如下: [root@awen01 /usr/local/apache-hive-1.2.1-bin]#./bin/hive Logging initialized using configurat ...

  9. Django自带后台管理配置

    Django自带后台管理的配置 创建项目和应用 修改配置文件 数据库配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql' ...

  10. sigaction函数

    sigaction函数是设置信号处理的接口.比signal函数更健壮 #include <signal.h> int sigaction(int signum, const struct ...