题目描述

给出二维平面上n个与y轴平行的线段,求最大的k,使得存在一条形如$y=ax^2+bx(a<0,b>0)$的抛物线与前k条线段均有公共点

输入

输入文件第一行是一个正整数N,表示一共有N关。接下来有N行,第i+1行是用空格隔开的三个正整数xi,yi1,yi2(yi1<yi2 ),表示第i关出现的靶子的横坐标是xi,纵坐标的范围是从yi1到yi2 。 
输入保证30%的数据满足N≤100,50%的数据满足N≤5000,100%的数据满足N≤100000且给 出的所有坐标不超过109 。

输出

仅包含一个整数,表示最多的通关数。

样例输入

5
2 8 12
5 4 5
3 8 10
6 2 3
1 3 7

样例输出

3


题解

二分+半平面交

题目一眼二分答案(别问我怎么看出的。。做题的经验告诉的我),然后转化为判定性问题。

那么如何判断能否满足条件?考虑每个限制条件:$\begin{cases}ax_i^2+bx_i\ge y_i\\ax_i^2+bx_i\le z_i\end{cases}$。

这里面的ab是变量,那么可以将限制条件看做是aOb平面直角坐标系上的几何限制条件,不等式有解<=>限制的条件有公共部分。

所以将限制条件转化为半平面求交即可。

真简单= =

本体最恶心之处在于细节、细节、细节。。。只有细节。。。

细节1:a必须小于0,b必须大于0,因此需要将半平面交限制在第二象限,所以需要添加两条辅助线。。。
细节2:判断半平面是否有交,需要保证有交的时候交需要是一个封闭多边形。因此需要再加两条辅助线。。。
细节3:eps这个东西是真的烦人。。。本题的eps应设为1e-18,且在处理限制条件时加(因为等于的时候也算满足条件)和限制象限时加(因为不能等于),其余时候不能加。并且需要使用long double。
细节4:本题卡常。。。所以所有小函数必须加inline不然会GG。。。排序是需要先把极角预处理出来,不能在比较时现求,否则也会GG。。。

直接上代码吧:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
#define eps 1e-18
using namespace std;
typedef long double ld;
struct point
{
ld x , y;
point() {}
point(ld a , ld b) {x = a , y = b;}
point operator+(const point &a)const {return point(x + a.x , y + a.y);}
point operator-(const point &a)const {return point(x - a.x , y - a.y);}
point operator*(const ld &a)const {return point(x * a , y * a);}
}p[N];
struct line
{
point p , v;
ld ang;
line() {}
line(ld a , ld b , ld c , ld d) {p = point(a , b) , v = point(c , d) , ang = atan2(v.y , v.x);}
}a[N] , q[N];
ld px[N] , py[N] , pz[N];
inline ld cross(point a , point b) {return a.x * b.y - a.y * b.x;}
inline bool left(line a , point b) {return cross(a.v , b - a.p) > 0;}
inline point inter(line a , line b)
{
point u = a.p - b.p;
ld tmp = cross(b.v , u) / cross(a.v , b.v);
return a.p + a.v * tmp;
}
bool cmp(const line &a , const line &b)
{
return a.ang == b.ang ? left(a , b.p) : a.ang < b.ang;
}
bool judge(int mid)
{
int i , tot = 1 , l = 1 , r = 1;
for(i = 1 ; i <= mid ; i ++ ) a[i] = line(0 , py[i] / px[i] - eps , -1 , px[i]) , a[i + mid] = line(0 , pz[i] / px[i] + eps , 1 , -px[i]);
a[mid * 2 + 1] = line(-eps , eps , 0 , -1) , a[mid * 2 + 2] = line(-eps , eps , -1 , 0);
a[mid * 2 + 3] = line(-1e10 , 1e10 , 0 , 1) , a[mid * 2 + 4] = line(-1e10 , 1e10 , 1 , 0);
sort(a + 1 , a + mid * 2 + 5 , cmp);
for(i = 2 ; i <= mid * 2 + 4 ; i ++ )
if(a[i].ang != a[i - 1].ang)
a[++tot] = a[i];
q[1] = a[1];
for(i = 2 ; i <= tot ; i ++ )
{
while(l < r && left(a[i] , p[r - 1])) r -- ;
while(l < r && left(a[i] , p[l])) l ++ ;
q[++r] = a[i];
if(l < r) p[r - 1] = inter(q[r - 1] , q[r]);
}
while(l < r && left(q[l] , p[r - 1])) r -- ;
p[r] = inter(q[r] , q[l]);
return r - l > 1;
}
int main()
{
int n , i , l = 1 , r , mid , ans = 0;
scanf("%d" , &n) , r = n;
for(i = 1 ; i <= n ; i ++ ) scanf("%Lf%Lf%Lf" , &px[i] , &py[i] , &pz[i]);
while(l <= r)
{
mid = (l + r) >> 1;
if(judge(mid)) ans = mid , l = mid + 1;
else r = mid - 1;
}
printf("%d\n" , ans);
return 0;
}

【bzoj2732】[HNOI2012]射箭 二分+半平面交的更多相关文章

  1. 【BZOJ2732】【HNOI2012】射箭 二分+半平面交

    此题重点在卡精度!!! 本地已经下载数据测试并通过了,然而$B$站上还是$WA$的,可能是$CPU$对于$long\ double$ 的资瓷不一样. 此题答案显然是可以二分出来的,设当前要监测是否能射 ...

  2. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  3. 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)

    洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...

  4. [bzoj2732][HNOI2012]射箭

    Description 沫沫最近在玩一个二维的射箭游戏,如下图所示,这个游戏中的$x$轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴.沫沫控制一个位于$(0, ...

  5. POJ3525 半平面交

    题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...

  6. 【kuangbin专题】计算几何_半平面交

    1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...

  7. 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交

    4515: [Sdoi2016]游戏 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 304  Solved: 129[Submit][Status][ ...

  8. poj3335 半平面交

    题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...

  9. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

随机推荐

  1. Subversion简介

    作为一名编程人员,SVN经常作为代码.项目的版本控制,殊不知SVN也可作为其他领域的版本控制,例如对文档.音频.视频等 . SVN可以看成一种文件系统,为了使工作人员提高工作效率,可以进行并行的工作, ...

  2. AMD、CMD、Common规范及对比

    https://blog.csdn.net/bluesky1215/article/details/71081780  1.名词解释 AMD:Asynchronous Modules Definiti ...

  3. MySQL如何计算重要的指标,来确定配置是否正确

    在调优MySQL数据库和监控数据库时,很多朋友不知道如何下手,怎么来确定是不是参数设置的合理,下面给出一些如何计算指标,来确定数据库参数是否设置合理,希望给大家一些方法,去做MySQL数据库优化,最好 ...

  4. Python3.6+pyinstaller+Django

    方案(一)Python3.6+pyinstaller+windows服务 一.Python3.6(64位)环境清单 Django==1.11.7 django-windows-tools==0.2 P ...

  5. PHP递归操作

    对于php的递归操作解释说明,递归基本上是学习每种语言都要会的最基本的操作.来吧,下面是我闲的时候随便写的一个对数组进行遍历操作的一个递归函数. 原理很简单,递归就是在一个函数里面调用自身的一种机制. ...

  6. 创建数据库配置文件ini(转)

    一.有必要了解INI文件的结构: ;注释 [小节名] 关键字=值 ... ---- INI文件允许有多个小节,每个小节又允许有多个关键字, “=”后面是该关键字的值. ---- 值的类型有三种:字符串 ...

  7. paramiko基本操作

    paramiko 是一个用作远程控制的模块,它遵循SSH2协议,支持以加密和认证的方式来进行远程服务器的连接.操作.上传和下载. 官方文档地址:http://docs.paramiko.org/ pa ...

  8. C语言函数篇(二)函数参数基础设计

    形参实现一种数据传入的接口 ,由 实参 拷贝给 形参. 拷贝!!!!!!!!!!! 例1: void func(int tmp){ //意图是实现传进来的参数 +1 tmp++; } int mian ...

  9. 寻找物体的凸包 opencv

    凸包的含义: 在二维平面上给定点集,凸包就是将最外层的点连接起来构成的凸多边形.并且这个凸多边形能包含点集中所有的点.OPENCV中: convexHull函数用于寻找图像点集中的凸包.它有六个输入参 ...

  10. python搭建友盟以及个推推送web服务器

    一.友盟客户端demo: 由于SDK原因,新版Android Studio的Android API 28 Platform无法同步新建项目, 所以我最终选择下载android-studio-bundl ...