最大子序列和——HDU-1003 Max Sum
题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置
解题思路:经典DP,可以定义dp[i]表示以a[i]为结尾的子序列的和的最大值,因而最大连续子序列及为dp数组中的最大值。
状态转移方程:dp[1] = a[1]; //以a[1]为结尾的子序列只有a[1];
i >= 2时, dp[i] = max( dp[i-1]+a[i], a[i] );
dp[i-1]+a[i] > a[i]时,即dp[i-1](以a[i-1]为结尾的子序列的和的最大值)的值为正,那么dp[i-1]则对dp[i]有贡献,
dp[i-1]+a[i] < a[i]时,即dp[i-1] < 0,那么抛弃它,dp[i] = a[i]
例子:序列 6 -7 5 2 -3, 则dp[i]分别为 6 -1 5 7 4,注意dp[2]直接用a[2]表示,因为dp[1] = -1 < 0; 最后最大子序列和即为dp数组中的最大值 5;
至于位置的记录,则再每次获取到最大值时更新即可。另外此题是从前往后更新,可直接使用a[i]数组而省下一个dp数组。
//最大子序列和
#include <iostream>
#include <cstdio>
#include <math.h>
#include <string.h>
#include <string>
using namespace std;
int dp[];
int t,m,l,r,start,maxx;
int main()
{
scanf("%d",&t);
for(int i=;i<=t;i++)
{
scanf("%d",&m);
for(int j=;j<=m;j++)
{
scanf("%d",&dp[j]);
}
l = r = start = ;
maxx = dp[]; for(int j=;j<=m;j++)
{
if(dp[j-] >= )
dp[j] = dp[j-] +dp[j];
else
start = j;
if(dp[j] > maxx){
maxx = dp[j];
l = start;
r = j;
}
}
cout <<"Case "<<i<<":\n"<<maxx<<" "<<l<<" "<<r<<endl;
if(i != t)
cout<<endl;
}
return ;
}
第二种解法 ,直接在输入的时候判断是否形成最大子序列,如果数列小于零,则一直重排,不过maxx最好定义的足够小,否则会因为全部是负数这个点wa掉
#include <iostream>
#include <math.h>
#include <cstdio>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
for(int i=;i<=t;i++)
{
int m,k;
int maxx = -,sum = ,l = ,r = ,cnt = ,temp;// l 不是左下标 而是maxx序列的个数
scanf("%d",&m);
int m2 = m;
while(m--)
{
scanf("%d",&k);
sum += k;
cnt++;
if(sum > maxx){
l = cnt;
maxx = sum;
r = m2 - m;
}
if(sum < ){
sum = ;
cnt = ;
}
}
cout <<"Case "<<i<<":\n"<<maxx<<" "<<r-l+<<" "<<r<<endl;
if(i != t)
cout<<endl;
}
return ;
}
最大子序列和——HDU-1003 Max Sum的更多相关文章
- HDU 1003 Max Sum --- 经典DP
HDU 1003 相关链接 HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...
- HDOJ(HDU).1003 Max Sum (DP)
HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...
- hdu 1003 Max Sum (DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 1003 Max Sum【动态规划求最大子序列和详解 】
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU 1003 Max Sum * 最长递增子序列(求序列累加最大值)
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行
测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...
- HDU 1003 Max Sum
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU 1003 Max Sum(AC代码)
#include <stdio.h> int main(){ int i,t,j,n,x; int start,end,temp,max,sum; scanf("%d" ...
- hdu 1003 Max Sum (动态规划)
转载于acm之家http://www.acmerblog.com/hdu-1003-Max-Sum-1258.html Max Sum Time Limit: 2000/1000 MS (Java/O ...
随机推荐
- 纯CSS3实现的动感菜单效果
1. [代码] 纯CSS3实现的动感菜单效果 <!DOCTYPE html><head><meta http-equiv="Content-Type" ...
- javascript中的this值
如何确定this的值 this值会被传递给所有函数,this的值是基于运行时调用函数的上下文. 例如:从全局作用域调用sayFoo函数时,this引用window对象, 当它作为myObject的一 ...
- jQuery中的动画理论干货
[jQuery中的动画] 通过jQuery动画能够轻松地为页面添加精彩的视觉效果 [show()方法和hide()方法]1.show()方法和hide()方法是jQUERY中最基本的动画方法,相当于在 ...
- 8 Python 数据类型—元祖
Python的元组与列表类似,不同之处在于元组的元素不能修改. 元组使用小括号,列表使用方括号. 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可. 创建空元组 tup1 = () 元组中只 ...
- curl常用命令行总结
curl 有时HTTP服务接口写完,需要验证下接口功能,这个使用用curl最合适了 curl 全称 command line url viewer curl www.taobao.com curl w ...
- 小程序wxss编译错误
控制台输入openVendor() ,清除里面的wcsc.exe,然后重启工具.
- C++ 播放音频流(PCM裸流)
直接上代码,如果有需要可以直接建一个win32控制台程序然后将代码拷过去改个文件名就可以用了(注意将声道和频率与你自己的文件对应哦).当然我自己也用VS2008(VS2013好用太多,强烈推荐还是用V ...
- Express Route的配置
ExpressRoute在中国已经Preview了. 本篇文章讲介绍ExpressRoute如何配置. Express Route的逻辑拓扑结构: 在配置Express Route之前,需要做VLAN ...
- 【转】Pro Android学习笔记(五三):调试和分析(1):Debug视图和DDMS视图
目录(?)[-] Debug视图 DDMS视图 查看应用运行状态 进入debug状态 HPROF Thread信息 Method信息 Stop 截图 UI层次架构信息 其它的 Tab中提供的功能 我们 ...
- 在浏览器中输入url并回车后发生了什么?
1 解析url url主要由以下几个部分组成: 1 传输协议 2 服务器 3 域名 4 端口 5 虚拟目录 6 文件名 7 锚 8 参数 2 DNS(域名)解析 找到域名对应的ip 3 浏览器与网站建 ...