最大子序列和——HDU-1003 Max Sum
题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置
解题思路:经典DP,可以定义dp[i]表示以a[i]为结尾的子序列的和的最大值,因而最大连续子序列及为dp数组中的最大值。
状态转移方程:dp[1] = a[1]; //以a[1]为结尾的子序列只有a[1];
i >= 2时, dp[i] = max( dp[i-1]+a[i], a[i] );
dp[i-1]+a[i] > a[i]时,即dp[i-1](以a[i-1]为结尾的子序列的和的最大值)的值为正,那么dp[i-1]则对dp[i]有贡献,
dp[i-1]+a[i] < a[i]时,即dp[i-1] < 0,那么抛弃它,dp[i] = a[i]
例子:序列 6 -7 5 2 -3, 则dp[i]分别为 6 -1 5 7 4,注意dp[2]直接用a[2]表示,因为dp[1] = -1 < 0; 最后最大子序列和即为dp数组中的最大值 5;
至于位置的记录,则再每次获取到最大值时更新即可。另外此题是从前往后更新,可直接使用a[i]数组而省下一个dp数组。
//最大子序列和
#include <iostream>
#include <cstdio>
#include <math.h>
#include <string.h>
#include <string>
using namespace std;
int dp[];
int t,m,l,r,start,maxx;
int main()
{
scanf("%d",&t);
for(int i=;i<=t;i++)
{
scanf("%d",&m);
for(int j=;j<=m;j++)
{
scanf("%d",&dp[j]);
}
l = r = start = ;
maxx = dp[]; for(int j=;j<=m;j++)
{
if(dp[j-] >= )
dp[j] = dp[j-] +dp[j];
else
start = j;
if(dp[j] > maxx){
maxx = dp[j];
l = start;
r = j;
}
}
cout <<"Case "<<i<<":\n"<<maxx<<" "<<l<<" "<<r<<endl;
if(i != t)
cout<<endl;
}
return ;
}
第二种解法 ,直接在输入的时候判断是否形成最大子序列,如果数列小于零,则一直重排,不过maxx最好定义的足够小,否则会因为全部是负数这个点wa掉
#include <iostream>
#include <math.h>
#include <cstdio>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
for(int i=;i<=t;i++)
{
int m,k;
int maxx = -,sum = ,l = ,r = ,cnt = ,temp;// l 不是左下标 而是maxx序列的个数
scanf("%d",&m);
int m2 = m;
while(m--)
{
scanf("%d",&k);
sum += k;
cnt++;
if(sum > maxx){
l = cnt;
maxx = sum;
r = m2 - m;
}
if(sum < ){
sum = ;
cnt = ;
}
}
cout <<"Case "<<i<<":\n"<<maxx<<" "<<r-l+<<" "<<r<<endl;
if(i != t)
cout<<endl;
}
return ;
}
最大子序列和——HDU-1003 Max Sum的更多相关文章
- HDU 1003 Max Sum --- 经典DP
HDU 1003 相关链接 HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...
- HDOJ(HDU).1003 Max Sum (DP)
HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...
- hdu 1003 Max Sum (DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 1003 Max Sum【动态规划求最大子序列和详解 】
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU 1003 Max Sum * 最长递增子序列(求序列累加最大值)
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行
测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...
- HDU 1003 Max Sum
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- HDU 1003 Max Sum(AC代码)
#include <stdio.h> int main(){ int i,t,j,n,x; int start,end,temp,max,sum; scanf("%d" ...
- hdu 1003 Max Sum (动态规划)
转载于acm之家http://www.acmerblog.com/hdu-1003-Max-Sum-1258.html Max Sum Time Limit: 2000/1000 MS (Java/O ...
随机推荐
- Codeforces 163A Substring and Subsequence:dp【子串与子序列匹配】
题目链接:http://codeforces.com/problemset/problem/163/A 题意: 给你两个字符串a,b,问你有多少对"(a的子串,b的子序列)"可以匹 ...
- spring学习(3)
bean的声明周期 为什么把生命周期当做一个重点? Servlet->servlet生命周期 Servlet生命周期分为三个阶段: 1:初始化阶段,调用init()方法 2:响应客户请求阶段,调 ...
- form 中Enctype=multipart/form-data 的作用
form 中Enctype=multipart/form-data 的作用 ENCTYPE="multipart/form-data"用于表单里有图片上传. <form na ...
- unity3D编辑器扩展
编辑器扩展只是在编辑项目中运行,发布出来是不会运行的. 固定创建一个文件夹Editor:所有的资源或者代码都不会被打包进去. 01.使用MenuItem添加菜单栏按钮 脚本不需要作为组件存在,可以不用 ...
- java-StringBuffer常用方法
对字符串进行修改的时候,需要使用可变长字符串StringBuffer 和 StringBuilder 类. append(String s):将指定的字符串追加到此字符序列. Reverse():将此 ...
- JVM的性能跳优
首先需要找到需要进行调优的进程. 通过jps -v -l -m 找到我需要调优的进程 其中, -m表示输出传入main方法的参数, -l表示输出的main类或jar包的名字, -v表示传入JVM的参数 ...
- MarkDown不支持图片放缩。。
功能: urllib模块提供的 ...
- JSP介绍(4)--- JSP 过滤器
过滤器是可用于 Servlet 编程的 Java 类,可以实现以下目的: 在客户端的请求访问后端资源之前,拦截这些请求. 在服务器的响应发送回客户端之前,处理这些响应. 过滤器通过 Web 部署描述符 ...