POJ3094 Sky Code(莫比乌斯反演)
POJ3094 Sky Code(莫比乌斯反演)
题意
给你\(n\le 10^5\)个数,这些数\(\le 10^5\),问这些这些数组成的互不相同的无序四元组(a,b,c,d)使得gcd(a,b,c,d)=1的四元组有多少?
解法
枚举一个约数\(k\),看看总共有多少个数\(S_k=\{x\}\)满足\(k|x\)。那么可以保证(a,b,c,d)有的一个共同的因子是k,这样的四元组的个数就是
\]
这样算会算重,比如枚举到\(k=4\)再枚举到\(k=2\),这两者的方案显然有重复,加入有一个四元组满足有一个共同约数是4,那么他们一定也可以满足有一个共同约数是2。我们记\(f(x)=\)最大公因数是\(x\)的四元组的数量。上面的那个大\(F(x)\)就表示有一个公因数(不是最大公因数)是\(x\)的四元组的数量
我们数学模型化这个算重的关系:
\]
这不就是莫比乌斯反演可以解决的嘛 piece of cake
\]
那么把\(f(1)\)求出来就好了
Q:你这样不是O(n^2)吗,你怎么实现可以在正确的复杂度内得到每个数所有的因数?
A:开个桶表示每个\(|S_k|\),枚举\(i\in [2,\sqrt x]\),把\(i\)和\(x/i\)都丢在桶里计数。复杂度\(O(n^{1.5})\)注意当\(i=x/i\)的时候只算一次!
//@winlere
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std; typedef long long ll;
template < class ccf > inline ccf qr(ccf ret){ ret=0;
register char c=getchar();
while(not isdigit(c)) c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return ret;
}
const int maxn=1e4+1;
ll c[maxn][5];
int n;
ll ans;
int buk[maxn];
int cnt[maxn];
bool data[maxn];
int mu[maxn];
bool usd[maxn];
vector < int > ve;
inline void pr(){
usd[1]=1;mu[1]=0;
for(register int t=2;t<maxn;++t){
if(not usd[t]) ve.push_back(t),mu[t]=-1;
for(register int i=0,edd=ve.size();i<edd;++i){
register int k=ve[i];
if(1ll*k*t>maxn)break;
usd[k*t]=1;
if(t%k==0) break;
mu[k*t]=-mu[t];
}
}
}
int main(){
c[0][0]=1;
pr();
for(register int t=1;t<maxn;++t){
c[t][0]=1;
for(register int i=1;i<=4;++i)
c[t][i]=c[t-1][i-1]+c[t-1][i];
}
while(~scanf("%d",&n)){
ans=c[n][4];
memset(buk,0,sizeof buk);
for(register int t=1,data;t<=n;++t){
++buk[data=qr(1)];
for(register int i=2;i*i<=data;++i)
if(data%i==0)
if(++buk[i],data/i!=i) ++buk[data/i];
}
for(register int t=1;t<maxn;++t)
if(buk[t]>=4&&mu[t])
ans+=mu[t]*c[buk[t]][4];
printf("%lld\n",ans);
}
return 0;
}
POJ3094 Sky Code(莫比乌斯反演)的更多相关文章
- POJ Sky Code 莫比乌斯反演
N. Sky Code Time Limit: 1000ms Case Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO for ...
- POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数
http://poj.org/problem?id=3904 题意:给一些数,求在这些数中找出四个数互质的方案数. 莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- HDU 5212 Code (莫比乌斯反演)
题意:给定上一个数组,求 析: 其中,f(d)表示的是gcd==d的个数,然后用莫比乌斯反演即可求得,len[i]表示能整队 i 的个数,可以线性筛选得到, 代码如下: #pragma comment ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演
SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...
- BZOJ 1114 Number theory(莫比乌斯反演+预处理)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
随机推荐
- 系统封装 如何为原生PE集成软件
1 我们首先集成Explorer.老外的BSExplorer比较好用,下载之后得到这些文件,不算太大. 2 这里需要注意,前一章讲解如何打造原生PE已经制作成了ISO,这里想要集成软件还需要回到刚 ...
- Input.GetAxis 获取轴
static function GetAxis (axisName : string) : float Description描述 Returns the value of the virtual a ...
- 高速排序java语言实现
本博客不再更新,很多其它精彩内容请訪问我的独立博客 高速排序是非常重要的排序算法,可是我在学的时候发现网上没有特别好的样例所以自己动手写了一个. 自己动手丰衣足食. package sort; imp ...
- Nginx:管理HTTP模块的配置项
参考资料<深入理解Nginx> 一个nginx.conf的例子 http { mytest_num ; server { server_name A; listen ; mytest_nu ...
- Hbase笔记3 shell命令
http://www.jb51.net/article/31172.htm 这个文章写得挺好 1.HBase的shell就和我们用Mysql的终端是一个意思,比如我们安装好Mysql,配置好了环境变量 ...
- 基于React的PC网站前端架构分析
代码地址如下:http://www.demodashi.com/demo/12252.html 本文适合对象 有过一定开发经验的初级前端工程师: 有过完整项目的开发经验,不论大小: 对node有所了解 ...
- sql server 执行大.sql文件
打开cmd执行:osql -S 127.0.0.1 -U sa -P sa -i d:\test.sql 执行后会提示输入密码.
- 运行./cpp.sh,显示command not found
首先运行ls -l 查看这个文件的属性是否可执行drwxrwxrwx对当前用户必须具有可执行权限(即含有x符号)如果没有可以运行chmod 777 cpp.sh 添加可执行权限
- [译] JavaScript 的事件循环
译者注 本译文基本是按原文的意思来翻译,但对于 JavaScript 的事件循环,个人感觉还是 Philip Roberts 的视频讲解更形象些,思路和本文大致相同,不过他把事件表理解为 Web AP ...
- Atitit.Java exe bat 作为windows系统服务程序运行
Atitit.Java exe bat 作为windows系统服务程序运行 1. 使用SC命令+srvany.exe (不错,推荐)+net start1 1.1. First 创建一个java的运 ...