Bloom Filter:海量数据的HashSet
Bloom Filter一般用于数据的去重计算,近似于HashSet的功能;但是不同于Bitmap(用于精确计算),其为一种估算的数据结构,存在误判(false positive)的情况。
1. 基本原理
Bloom Filter能高效地表征数据集合\(S = \lbrace x_1 ,x_2 ,...,x_n \rbrace\),判断某个数据是否属于这个集合。其基本思想如下:用长度为\(m\)的位数组\(A\)来存储集合信息,同时是有\(k\)个独立的hash函数\(h_i(1\le i \le k)\)将数据映射到位数组空间。具体流程如下:
- 将长度为\(m\)的位数组全置为0;
- 对于数据\(x \in S\),依次计算其\(k\)个hash函数值\(h_i(x)=w,且1\le i \le k, 1 \le w \le m\),将位数组中的第\(a\)位bit置为1,即A[w]=1.

当查询数据\(y\)是否属于集合\(S\)时,计算其\(k\)个hash函数值,如果\(h_i(y)\)对应的位数组均为1,则数据\(y\)属于集合\(S\);反之,则不属于。

2. 相关计算
在上述判断中,可能存在误判(false positive, FP),比如某数的\(k\)个hash函数值可能属于集合\(S\)中某几个数\(k\)个hash函数值组成的集合。显然,误判率跟集合大小\(n\)、位数组大小\(m\)、hash函数的个数\(k\)有关;在其他条件不变的情况下,若\(n\)越大(\(m\)越小,或\(k\)越多),则误判率越高。误判率估算公式如下:
\]
在实际的场景中,常常是已知集合大小\(n\),预设误判率\(P_{fp}\),需要计算位数组大小\(m\)、hash函数的个数\(k\)。通过一系列的数学推导,可得到如下公式:
\]
\]
详细的数学推导可参看相关文档。
3. 实战
Bloom Filter的Java实现有Guava、stream-lib,Scala实现有breeze、bloom-filter-scala。采用breeze库的Distinct Count实现如下:
import breeze.util.BloomFilter
val bf = BloomFilter.optimallySized[Int](5, 0.01)
val arr = Array(1, 3, 4, 5, 1, 2, 6, 3, 1)
var cnt = 0
arr.foreach { t =>
bf.contains(t) match {
case false => cnt += 1; bf.+=(t)
case _ =>
}
}
println(arr.distinct.length) // 6
println(cnt) // 6
从上面的Scala代码中,不难发现:在Distinct Count计算过程中,需要定义一个global变量,逐一用于对每个不属于集合元素进行计算。显然,在分布式计算中,这种方法不太适用;因为global变量没法做到实时的传递更新。因此,另一种估算算法HyperLogLog,拥有优秀的可加性、易于并行化,在大数据的场景下应用广泛——Spark、Kylin中的近似Distinct Count便是基于此。
4. 参考资料
[1] Broder, Andrei, and Michael Mitzenmacher. "Network Applications of Bloom Filters: A Survey." Internet Mathematics 1.4 (2011): 485-509.
[2] 张俊林, 《大数据日知录》.
Bloom Filter:海量数据的HashSet的更多相关文章
- 实例学习Bloom Filter
0. 科普1. 为什么需要Bloom Filter2. 基本原理3. 如何设计Bloom Filter4. 实例操作5. 扩展 0. 科普 Bloom Filter是由Bloom在1970年提出的一种 ...
- Bloom Filter 算法具体解释
Bloom Filter 算法 Bloom filter是由Burton Bloom 在1970年提出的,其后在P2P上得到了广泛的应用.Bloom filter 算法可用来查询某一数据是否在某一数据 ...
- Bloom Filter (海量数据处理)
什么是Bloom Filter 先来看这样一个爬虫相关问题:文件A中有10亿条URL,每条URL占用64字节,机器的内存限制是4G,现有一个URL,请判断它是否存在于文件A中(爬过的URL无需再爬). ...
- Bloom Filter的应用
1.布隆过滤器是什么? 又快又小的处理方法 布隆过滤器(Bloom Filter):是一种空间效率极高的概率型算法和数据结构,用于判断一个元素是否在集合中(类似Hashset). 它的核心一个很长的二 ...
- php实现Bloom Filter
Bloom Filter(BF) 是由Bloom在1970年提出的一种多哈希函数映射的高速查找算法,用于高速查找某个元素是否属于集合, 但不要求百分百的准确率. Bloom filter通经常使用于爬 ...
- 布隆过滤器(Bloom Filter)原理以及应用
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的 ...
- 布隆过滤器 Bloom Filter 2
date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...
- 探索C#之布隆过滤器(Bloom filter)
阅读目录: 背景介绍 算法原理 误判率 BF改进 总结 背景介绍 Bloom filter(后面简称BF)是Bloom在1970年提出的二进制向量数据结构.通俗来说就是在大数据集合下高效判断某个成员是 ...
- Bloom Filter 布隆过滤器
Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下 ...
随机推荐
- Word/Excel 在线预览
前言 近日项目中做到一个功能,需要上传附件后能够在线预览.之前也没做过这类似的,于是乎就查找了相关资料,.net实现Office文件预览大概有这几种方式: ① 使用Microsoft的Office组件 ...
- 12、Struts2表单重复提交
什么是表单重复提交 表单的重复提交: 若刷新表单页面, 再提交表单不算重复提交. 在不刷新表单页面的前提下: 多次点击提交按钮 已经提交成功, 按 "回退" 之后, 再点击 &qu ...
- nodejs中获取时间戳、时间差
Nodejs中获取时间戳的方法有很多种,例如: new Date().getTime() Date.now() process.uptime() process.hrtime() 平时想获取一个时间戳 ...
- 破解SQLServer for Linux预览版的3.5GB内存限制 (UBUNTU篇)
在上一篇中我提到了如何破解RHEL上SQLServer的内存大小限制,但是Ubuntu上还有一道检查 这篇我将会讲解如何在3.5GB以下内存的Ubuntu中安装和运行SQLServer for Lin ...
- JavaScript 常量定义
相信同学们在看见这个标题的时候就一脸懵逼了,什么?JS能常量定义?别逗我好吗?确切的说,JS当中确实没有常量(ES6中好像有了常量定义的关键字),但是深入一下我们可以发现JS很多不为人知的性质,好好利 ...
- Python(九)Tornado web 框架
一.简介 Tornado 是 FriendFeed 使用的可扩展的非阻塞式 web 服务器及其相关工具的开源版本.这个 Web 框架看起来有些像web.py 或者 Google 的 webapp,不过 ...
- 编译器开发系列--Ocelot语言3.类型名称的消解
"类型名称的消解"即类型的消解.类型名称由TypeRef 对象表示,类型由Type 对象表示.类型名称的消解就是将TypeRef 对象转换为Type 对象. TypeResolve ...
- VS2015 Git 源码管理工具简单入门
1.VS Git插件 1.1 环境 VS2015+GitLab 1.2 Git操作过程图解 1.3 常见名词解释 拉取(Pull):将远程版本库合并到本地版本库,相当于(Fetch+Meger) 获取 ...
- java 字节流与字符流的区别
字节流与和字符流的使用非常相似,两者除了操作代码上的不同之外,是否还有其他的不同呢?实际上字节流在操作时本身不会用到缓冲区(内存),是文件本身直接操作的,而字符流在操作时使用了缓冲区,通过缓冲区再操作 ...
- 使用Nginx反向代理 让IIS和Tomcat等多个站点一起飞
使用Nginx 让IIS和Tomcat等多个站点一起飞 前言: 养成一个好习惯,解决一个什么问题之后就记下来,毕竟“好记性不如烂笔头”. 这样也能帮助更多的人 不是吗? 最近闲着没事儿瞎搞,自己在写一 ...