题意:一棵树,有很多分叉,每个分叉上最多有1个苹果。

  给出n,接下来n-1行,每行u,v,表示分叉u,v之间有树枝相连。这里数据中u相当于树中的父节点,v相当于子节点。

  给出两个操作:

  1.C x  如果分叉x有一个苹果,表示该苹果被摘下;如果没苹果,表示该分叉长出1个苹果。

  2.Q x  查询以分叉x为根节点的子树中所含有的苹果,包括分叉x。

思路:用树的后根遍历将树转化成一个序列,然后用树状数组维护。

  树的后根遍历(先遍历每棵子树,再遍历根节点)实质上是按照自下而上、从左至右的顺序将非线性结构的树转化为一个线性序列。

  每棵子树对应这个线性序列的一个连续的子区间,这样就可以用树状数组来维护更新。

原本我用vector超时,改用邻接表AC 。

代码一:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector> using namespace std;
const int maxn=;
int n,m,val=,tot=; //val即为树状数组中的顺序编号,tot为邻接表的边序号
int c[maxn]; //树状数组
int a[maxn]; //a[i]表示分叉i的苹果的值,0或1
int hash_value[maxn]; //hash_value[i]表示分叉i在树状数组中的序号
int left_leaf[maxn]; //left_leaf[i]表示以i为根节点的子树中最左底端的叶子节点的编号,该值的hash_value即为以i为根节点的子树在树状数组中的区间的最左端
int head[maxn]; struct Edge {
int to,next;
} edge[maxn]; void add(int u,int v) {
edge[tot].next=head[u];
edge[tot].to=v;
head[u]=tot++;
}
int lowbit(int x) {
return x&(-x);
}
void update(int i,int val) {
while(i<=n) {
c[i]+=val;
i+=lowbit(i);
}
}
int sum(int i) {
int sum=;
while(i) {
sum+=c[i];
i-=lowbit(i);
}
return sum;
}
//dfs后根遍历,求取每个节点在树状数组中的顺序编号,以及每棵子树的left_leaf值
void dfs(int u) {
if(head[u]==-) {
hash_value[u]=++val;
left_leaf[u]=u;
return;
}
int v,flag=;
for(int k=head[u]; k!=-; k=edge[k].next) {
v=edge[k].to;
dfs(v);
if(flag) {
//这里的v即使父节点u的最先访问的子节点
left_leaf[u]=left_leaf[v];
flag=;
}
}
hash_value[u]=++val;
}
int main() {
int u,v;
memset(head,-,sizeof(head));
scanf("%d",&n);
for(int i=; i<n; i++) {
scanf("%d%d",&u,&v);
add(u,v);
}
dfs();
memset(c,,sizeof(c)); for(int i=; i<=n; i++) {
a[i]=;
update(i,);
} scanf("%d",&m);
char str[];
int l,r;
for(int i=; i<m; i++) {
scanf("%s%d",str,&u);
if(str[]=='Q') {
r=hash_value[u];
l=left_leaf[u];
l=hash_value[l];
//[l,r]即为以u为根节点的子树在树状数组中的区间
printf("%d\n",sum(r)-sum(l-));
} else {
r=hash_value[u];
if(a[r]==) {
a[r]=;
update(r,-);
} else {
a[r]=;
update(r,);
}
}
}
return ;
}

也可以用结构体,来存储每个以节点i为根节点的子树在树状数组中的区间左端点和右端点:

代码二:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm> using namespace std;
const int maxn=;
int n,m;
int c[maxn]; //树状数组
bool a[maxn]; //用来标记该节点是否有苹果
int cnt=;
int head[maxn];
int tot=; struct Edge {
int next,to;
} edge[maxn]; struct Apple {
int l,r; //apple[u]的l和r表示以u为根的子树在树状数组中对应区间
} apple[maxn]; void add(int u,int v) {
edge[tot].next=head[u];
edge[tot].to=v;
head[u]=tot++;
}
//dfs,从节点u出发,计算即节点u为根的子树区间[apple[u].l,apple[u].r]
void dfs(int u) {
if(head[u]==-) {
apple[u].l=apple[u].r=cnt;
cnt++;
return;
}
apple[u].l=cnt;
for(int k=head[u]; k!=-; k=edge[k].next) {
int v=edge[k].to;
dfs(v);
}
apple[u].r=cnt++;
}
int lowbit(int x) {
return x&(-x);
}
void update(int i,int v) {
while(i<=cnt) {
c[i]+=v;
i+=lowbit(i);
}
}
int sum(int i) {
int res=;
while(i) {
res+=c[i];
i-=lowbit(i);
}
return res;
}
int main() {
char str[];
int u,v;
memset(head,-,sizeof(head));
memset(a,true,sizeof(a));
scanf("%d",&n);
for(int i=; i<n-; i++) {
scanf("%d%d",&u,&v);
add(u,v);
}
dfs();
scanf("%d",&m);
//初始时,每个节点数都有一个苹果
for(int i=; i<=n; i++)
update(apple[i].r,);
for(int i=; i<=m; i++) {
scanf("%s%d",str,&u);
if(str[]=='C') {
if(a[u]) {
update(apple[u].r,-);
a[u]=false;
} else {
update(apple[u].r,);
a[u]=true;
}
} else {
printf("%d\n",sum(apple[u].r)-sum(apple[u].l-));
}
}
return ;
}

POJ 3321 Apple Tree(后根遍历将树转化成序列,用树状数组维护)的更多相关文章

  1. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  2. POJ - 3321 Apple Tree (线段树 + 建树 + 思维转换)

    id=10486" target="_blank" style="color:blue; text-decoration:none">POJ - ...

  3. POJ 3321 Apple Tree 【树状数组+建树】

    题目链接:http://poj.org/problem?id=3321 Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submiss ...

  4. POJ 3321 Apple Tree (DFS + 树状数组)

    题意: 一棵苹果树有N个分叉,编号1---N(根的编号为1),每个分叉只能有一颗苹果或者没有苹果. 现在有两种操作: 1.某个分叉上的苹果从有变无或者从无边有. 2.需要统计以某个分叉为根节点时,它的 ...

  5. POJ 3321 Apple Tree(dfs序树状数组)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=10486 题意:一颗有n个分支的苹果树,根为1,每个分支只有一个苹果,给出n- ...

  6. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

  7. POJ 3321 Apple Tree(DFS序+线段树单点修改区间查询)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25904   Accepted: 7682 Descr ...

  8. POJ 3321 Apple Tree dfs+二叉索引树

    题目:http://poj.org/problem?id=3321 动态更新某个元素,并且求和,显然是二叉索引树,但是节点的标号不连续,二叉索引树必须是连续的,所以需要转化成连续的,多叉树的形状已经建 ...

  9. POJ 3321 Apple Tree (树状数组+dfs序)

    题目链接:http://poj.org/problem?id=3321 给你n个点,n-1条边,1为根节点.给你m条操作,C操作是将x点变反(1变0,0变1),Q操作是询问x节点以及它子树的值之和.初 ...

随机推荐

  1. 基于 unity ngui 上的滚动加载__UiVirtual

    在游戏里面经常会有背包,好友,对话,这样的列表.当列表的内容多了,如果一打开界面就对所有内容进行实例化,会消耗大量的性能,且会造成UI上的卡顿. 于是便需要,在列表里面只实例化屏幕上可见的item.屏 ...

  2. request.getSession();为什么不用response儿用request!

    首先回答为什么分别是response和request这两个内置对象.你得先明白你通过获取对象是做什么用的,是往哪用的.第一个PrintWriter out=response.getWriter()是想 ...

  3. Qt for Android 程序禁止屏幕旋转

    有时候我们希望让一个程序的界面始终保持在一个方向,不随手机(平板)方向旋转而变化:在AndroidManifest.xml的每一个需要禁止转向的Activity配置中加入 android:screen ...

  4. iOS屏幕尺寸和分辨率

    iOS平台家族成员主要包括iPhone.iPod Touch和iPad,但是各类设备的分辨率各不相同,目前存在的尺寸主要有: iOS设备的尺寸多种多样,此外,屏幕的分辨率也有多种,总结如下表所示: 其 ...

  5. Linux多命令协作:管道及重定向

  6. 汇编语言-求X的阶乘

    1. 题目:求X的阶乘值 2. 要求:输入一个整型数(不超过10),求出其阶乘值后输出,求阶乘的算法用子程序来实现. 3. 提示:可以用递归来实现,也可以用简单的循环来实现. 这里使用循环来实现: 对 ...

  7. [大牛翻译系列]Hadoop(22)附录D.2 复制连接框架

    附录D.2 复制连接框架 复制连接是map端连接,得名于它的具体实现:连接中最小的数据集将会被复制到所有的map主机节点.复制连接的实现非常直接明了.更具体的内容可以参考Chunk Lam的<H ...

  8. Linux大量TIME_WAIT的解决办法

    发布:theboy   来源:net   [大 中 小] 根据TCP协议定义的3次握手断开连接规定,发起socket主动关闭的一方 socket将进入TIME_WAIT状态,TIME_WAIT状态将持 ...

  9. setEllipsize(TruncateAt where)

    void android.widget.TextView.setEllipsize(TruncateAt where) public void setEllipsize (TextUtils.Trun ...

  10. js文本框验证

    1.文本框只能输入数字代码(小数点也不能输入) <input onkeyup="this.value=this.value.replace(/\D/g,'')" onafte ...