函数功能:生成稀疏矩阵

使用方法
S = sparse(A) 
将矩阵A转化为稀疏矩阵形式,即矩阵A中任何0元素被去除,非零元素及其下标组成矩阵S。
如果A本身是稀疏的,sparse(S)返回S。 
S = sparse(i,j,s,m,n,nzmax) 
由向量i,j,s生成一个m*n的含有nzmax个非零元素的稀疏矩阵S,并且有 S(i(k),j(k)) = s(k)。
向量 i,j 和 s 有相同的长度。对应对向量i和j的值,s 中任何零元素将被忽略。
s 中在 i 和 j 处的重复值将被叠加。 
注意:如果i或j任意一个大于最大整数值范围,2^31-1, 稀疏矩阵不能被创建。

S = sparse(i,j,s,m,n) 
用 nzmax = length(s) 
S = sparse(i,j,s) 
使m = max(i) 和 n = max(j),在s中零元素被移除前计算最大值,[i j s]中其中一行可能为[m n 0]。
S = sparse(m,n) 
sparse([],[],[],m,n,0)的缩写,生成一个m*n的所有元素都是0的稀疏矩阵。

备注:
MATLAB中所有内置的算术,逻辑和索引操作都可以应用到稀疏矩阵或混合于稀疏和全矩阵上。
稀疏矩阵的操作返回稀疏矩阵,全矩阵的操作返回权矩阵。 
在大多数情况下,稀疏和全矩阵的混合操作返回全矩阵,例外的一种情况是混合操作的结果在结构上稀疏,例如,A.*S至少和矩阵S一样稀疏。

应用举例:
S = sparse(1:n,1:n,1) 生成一个n*n的单位稀疏矩阵,和S = sparse(eye(n,n))有相同的结果,但是如果它的元素大部分是零元素的情况下也会暂时性的生成n*n的全矩阵。

B = sparse(10000,10000,pi) 可能不是非常有用的,但是它是能运行和允许的,它生成一个10000*10000的仅仅包含一个非零原色的矩阵,不要用full(B),因为这需要800兆储存单元。

分析和重组一个稀疏矩阵: 
[i,j,s] = find(S); 
[m,n] = size(S); 
S = sparse(i,j,s,m,n);

如果最后一行和最后一列是非零项,有下面: 
[i,j,s] = find(S); 
S = sparse(i,j,s);

 

MATLAB中的full matrix和sparse matrix

对full matrix和sparse matrix的理解:其实这只是matlab中存储稀疏矩阵的两种方法。

MATLAB函数sparse简介
函数功能:
这个函数与稀疏矩阵有关。
先说MATLAB中两个概念:full storage organization(对应于full matrix)和sparse storage organization(对应于sparse matrix)。
而要说明这两个概念,需要介绍稀疏矩阵的概念。
一般意义上的稀疏矩阵,就是看起来很松散的,也就是说,在这个矩阵中,绝大多数元素是零。例如:
0, 0, 0, 0;
0, 0, 1, 0;
0, 0, 0, 0;
0, 1, 0, 2;

计算机存储稀疏矩阵可以有两种思路:
1.按照存储一个普通矩阵一样存储一个稀疏矩阵,比如上面这个稀疏矩阵中总共十六个元素(三个非零元素),把这些元素全部放入存储空间中。这种存储方式,在matlab就叫做full storage organization。
2.只存储非零元素,那么怎么存储呢?
(4,2)        1
(2,3)        1
(4,4)        2
看出来了吧, 只存储非零元素在稀疏矩阵中的位置和值。比如,上面所举的这个例子,值为2的项在第4行第4列,那么我们就只需要存储这一非零项在稀疏矩阵中的“坐标”(4,4)和这一非零项的值2。在MATLAB中,这种存储方式就叫做sparse storage organization。虽然,这样要多存储一组坐标,但如果稀疏矩阵中非零元素非常少,以这种存储方式存储稀疏矩阵反而节省了内存空间。


为什么matlab中会同时存在这两种存储方式呢?
第一种方式, 更加直观,进行矩阵运算时(比如稀疏矩阵的乘法),算法简单易实现。
而第二种方式,虽然有时可以节省存储数据时占用的存储空间,但进行运算时需要专门的算法实现(使用C语言编写过稀疏矩阵乘法的同学应该能体会到)。


sparse
函数的功能就是把以第一种存储形式存储的稀疏矩阵转换成第二种形式存储(其实这个函数更重要的功能是构建稀疏矩阵,这里不再讨论)。对应的函数为full,即把以第二种方式存储的稀疏矩阵转换成第一种方式存储。
在MATLAB中,存储一个稀疏矩阵有两种方法。
语法格式:
S = sparse(A)
S = sparse(i,j,s,m,n,nzmax)
S = sparse(i,j,s,m,n)
S = sparse(i,j,s)
S = sparse(m,n)
各种语法格式详见MATLAB帮助文档。
相关函数:full、issparse

程序示例
>> A = [0, 0, 0, 0;
0, 0, 1, 0;
0, 0, 0, 0;
0, 1, 0, 2];
>> sparse(A)
ans =
   (4,2)        1
   (2,3)        1
   (4,4)        2

当然sparse函数还可以通过一定规则构造稀疏矩阵,这里就不多说了。

matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换)的更多相关文章

  1. matlab——sparse函数和full函数

    转载:http://www.cnblogs.com/lihuidashen/p/3435883.html matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换)   函数功能:生成 ...

  2. matlab sparse函数和full函数用法详解(转)

    sparse函数 功能:Create sparse matrix-创建稀疏矩阵 用法1:S=sparse(X)--将矩阵X转化为稀疏矩阵的形式,即矩阵X中任何零元素去除,非零元素及其下标(索引)组成矩 ...

  3. MATLAB相关快捷键以及常用函数

    MATLAB快捷键大全 F1帮助 F2改名F3搜索 F4地址 F5刷新 F6切换 F10菜单 CTRL+A全选 CTRL+C复制 CTRL+X剪切 CTRL+V粘贴 CTRL+Z撤消 CTRL+O打开 ...

  4. matlab中的常用的函数——在稀疏表示中学习到的

    1, 矩阵的逆: inv()函数: 2. 矩阵的伪逆: pinv()函数: 3. 矩阵的克罗内克尔积: kron()函数: 4. 得到一个dct变换的字典: dctmtx()函数, 它可以得到一个 n ...

  5. MATLAB中trapz和cumtrapz函数

    这两个函数都是MATLAB中的内置函数,是基于梯形法则的数值积分公式 例如我们有函数y=x^3-2x-3,为了计算在[0,1]上的积分,可以这么做: 其中x和y分别是自变量和对应的值,trapz其实就 ...

  6. matlab 对图像操作的函数概览

    转自博客:http://blog.163.com/fei_lai_feng/blog/static/9289962200991713415422/ 一. 读写图像文件 1. imread imread ...

  7. Matlab近期用到的函数(持续更新)

    最近任务用到matlab较多,第一版的代码大部分对于矩阵类的计算都是用for循环来完成的,主要是思维还没有适应matlab.看了同事的一份代码后,现在遇到需要循环的地方第一反应就是如何能够用矩阵的直接 ...

  8. MATLAB中“repmat”与“cat”函数的用法

    MATLAB中“repmat”与“cat”函数的用法 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. repmat函数 >> z=re ...

  9. MATLAB算术运算符和常用函数

    1 算术运算符 Matlab中的算术运算符按优先级由高到低为: (1) ^           幂 (2) *            乘      /            右除(正常除)       ...

随机推荐

  1. 为什么浏览器User-agent总是有Mozilla字样(User-agent String里的历史故事)【搜藏】

    你是否好奇标识浏览器身份的User-Agent,为什么每个浏览器都有Mozilla字样? Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 ...

  2. CDR绘制绚丽五角星※※

    CDR绘制绚丽五角星 1.绘制一个五角星,在多边形工具下拉的第二个就是 2.选中五角星,点击颜色即可.给五角星加上颜色 3.用立体化工具进行延伸. 4.点击图形中心向下拉. 看到了中间的一个长方条了没 ...

  3. HDU-4678 Mine 博弈SG函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4678 题意就不说了,太长了... 这个应该算简单博弈吧.先求联通分量,把空白区域边上的数字个数全部求出 ...

  4. TcxVerticalGrid demo

    procedure TForm1.Button1Click(Sender: TObject);var row: TcxEditorRow; i,t: Integer;begin grid.ClearR ...

  5. 关于local storage 和 session storage以及cookie 区别简析

    session storage 和local storage 都是存储在客户端的浏览器内: 一:关于COOKIE 的缺陷 * Cookie的问题 * 数据存储都是以明文(未加密)方式进行存储 * 安全 ...

  6. [一位菜鸟的COCOS-2D编程之路]精灵表单的制作以及简易动画的生成

    1.第一步:使用Zwoptex 制作精灵表单 2.制作的表单的名称为 cocos2Dpng,cocos2D.plist: 3.精灵的动画效果 主要分为五部分. // on "init&quo ...

  7. .NET解析HTML库集合

    CsQuery AngleSharp Jumony HtmlAgilityPack Fizzler ScrapySharp NSoup

  8. Dev 等待提示 WaitDialogForm 升级版

    本文转载:http://www.cnblogs.com/VincentLuo/archive/2011/12/24/2298916.html   一.Dev的等待提示框                 ...

  9. Redis缓存 ava-Jedis操作Redis,基本操作以及 实现对象保存

    源代码下载: http://download.csdn.net/detail/jiangtao_st/7623113 1.Maven配置 <dependency> <groupId& ...

  10. G711

    G.711就是语音模拟信号的一种非线性量化.细分有二种:G.711 a-lawand G.711 u-law.不同的国家和地方都会选取一种作为自己的标准. G.711a/u bitrate 是64kb ...