hdoj 2829 Lawrence 四边形不等式优化dp
dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值。
dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1e3+9;
int a[maxn];
long long dp[maxn][maxn],w[maxn][maxn],sum[maxn];
int s[maxn][maxn];
int main()
{
int n,m;
while(scanf("%d %d",&n,&m),n)
{
memset(dp,50,sizeof(dp));
memset(w,0,sizeof(w));
sum[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=a[i]+sum[i-1];
}
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
w[i][j]=w[i][j-1]+a[j]*(sum[j-1]-sum[i-1]); dp[0][0]=0;
s[0][1]=0; for(int i=1;i<=n;i++)
{
s[i][min(m,i)+1]=i-1;
for(int j=min(m,i);j>=1;j--)
for(int k=s[i-1][j];k<=s[i][j+1];k++)
if(dp[i][j]>dp[k][j-1]+w[k+1][i])
{
dp[i][j]=dp[k][j-1]+w[k+1][i];
s[i][j]=k;
}
}
long long ans=dp[m][m]+w[m+1][n];
for(int i=m;i<=n;i++)
ans=min(ans,dp[i][m]+w[i+1][n]);
printf("%lld\n",ans);
}
return 0;
}
hdoj 2829 Lawrence 四边形不等式优化dp的更多相关文章
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- [HDU2829] Lawrence [四边形不等式优化dp]
题面: 传送门 思路: 依然是一道很明显的区间dp 我们设$dp\left[i\right]\left[j\right]$表示前$j$个节点分成了$i$块的最小花费,$w\left[i\right]\ ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...
- POJ 1160 四边形不等式优化DP Post Office
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下 ...
随机推荐
- TCP长连接与短连接的区别
http://www.cnblogs.com/liuyong/archive/2011/07/01/2095487.html 1. TCP连接 当网络通信时采用TCP协议时,在真正的读写操作之前,se ...
- 198. House Robber
题目: You are a professional robber planning to rob houses along a street. Each house has a certain am ...
- python 包管理工具pip安装与使用
pip是python的一个包管理工具,与之类似的工具还有easy_install.根据官网的说法 如果你的python版本在Python 2 >=2.7.9 or Python 3 >=3 ...
- LINUX ulimit命令
概述 系统性能一直是一个受关注的话题,如何通过最简单的设置来实现最有效的性能调优,如何在有限资源的条件下保证程序的运作,ulimit 是我们在处理这些问题时,经常使用的一种简单手段.ulimit 是一 ...
- NFC(10)NDEF uri格式规范及读写示例(解析与封装ndef uri)
只有遵守NDEF uri 格式规范的数据才能写到nfc标签上. NDEF uri 格式规范 uri 只有两部分: 第1个字节是uri协议映射值,如:0x01 表示uri以 http://www.开头. ...
- 【HDOJ】4089 Activation
1. 题目描述长度为n的等待队列,tomato处于第m个,有如下四种可能:(1)激活失败,概率为$p_1$,队列中的顺序不变:(2)连接失败,概率为$p_2$,队头玩家重新排在队尾:(3)激活成功,概 ...
- 将非WPF window设为 WPF Window的Owner
如果WPF Content是寄宿在Win32 窗体或Windows Form中,则在WPF模块中可能不会存在WPF Window(WPF模块的根可能是个UserControl).如果在WPF模块中弹出 ...
- Struts1和Struts2都有什么区别?
总的来说,Struts1 的 Action 是单例模式,因此开发者必须保证它是线程安全的或是同步的,因为Struts 1中每个Action仅有一个实例来处理所有的请求. 但是在用Struts ...
- 记一次Sql优化过程
这几天在写一个存储过程,反复优化了几次,从最开始的7分钟左右,优化到最后的几秒,并且这个过程中我的导师帮我指点了很多问题,这些指点都是非常宝贵的,独乐乐不如众乐乐,一起来分享这次的优化过程吧. 这个存 ...
- SQL SERVER 2000 & SQL SERVER 2005 数据缓存依赖
一.SQL SERVER 7.0/2000和SQL SERVER 2005的简介及比较 1.1 SQL SERVER 7.0/2000 SQL SERVER 7.0/2000没有提供内置的支持 ...