Lasso估计论文学习笔记(一)
最近课程作业让阅读了这篇经典的论文,写篇学习笔记。
主要是对论文前半部分Lasso思想的理解,后面实验以及参数估计部分没有怎么写,中间有错误希望能提醒一下,新手原谅一下。
1.整体思路
作者提出了一种收缩和选择方法Lasso,这是一种可以用于线性回归的新的估计方法。它具有子集选择和岭回归的各自的优点。像子集选择一样可以给出具有解释力的模型,又能像岭回归一样具有可导的特性,比较稳定。同时避免了子集选择不可导,部分变化引起整体巨大变化这一不稳定的缺点。以及岭回归不能很好的收缩到0的缺点。
2.对文章目的理解
为了理解这篇文章是做了什么事情,先要明白回归的收缩和选择是用来做什么的。
我们用某一个模型F来回归拟合某一问题时,往往容易遇到过拟合的问题。这是经常是由于,模型过于复杂,比如参数过多,变量指数过高。过度拟合了训练数据,导致模型的泛化能力变差。这是需要引入正则化项(惩罚项)来使模型最后训练的结果不至于太过于复杂(过拟合)。
正则化一般具有如下形式:
是经验风险。J(f)是正则化项,就代表了对模型复杂度的惩罚,只要它能做到模型越复杂,J(f)值越大。所以最小化损失函数时,就会令经验风险尽量小的同时,考虑让模型复杂度也不要太大。这样虽然会提高模型的训练误差,甚至可能某些正则化操作会使模型偏差(Bias)变大,但是会提高模型的稳定程度(方差更小,模型更简单),减少模型的泛化误差。
这里有两个问题!
(1) 模型的简单体现在什么方面?(模型如何简化)
(2) 正则化是怎么让模型变简单的?
先说问题(1),考虑模型。向量X是特征向量,向量W是其对应的参数。模型复杂,一是体现在特征过多,第二是体现在X的指数过高。那么如何令模型变得简单呢,自然而然的想到若某些参数为0,那么就相当于不考虑这些特征Xi了(这就是子集选择的思想)。或者令某些参数缩小,这样不重要的特征对结果造成的影响也会变小(这就是shrinkage的思想)。当然有些参数在缩小过程中会变成0,这就是在收缩过程中起到了子集选择的效果。
那么关键的来了,问题(2)正则化是怎么让模型变简单的呢。上一段分析出,如果让某些不重要的参数进行收缩,能够使模型变得简化。再来看看正则化的例子:
以J(f)取||w||为例,可以看出,如果参数W越多,或者整理模的平方和越大,||w||就越大。所以在最小化代价函数的过程,就会考虑让参数的平方和也尽可能小(整体最小的前提下)。所以设不加正则化项的估计出的向量为,加了正则化项的估计出得参数向量为
。那么可以看出
。所以正则化项起到了shrinkage参数的效果,如果有些参数在收缩过程中精确到0,就相当于子集选择的效果(我们是希望这样的)。
那么这篇文章的目的就可以理解了,作者提出的Lasso就是一种具有岭回归(可导可直接求最小值)和子集选择(部分参数为0)的优点的估计方法(也可以说一种正则化的方法)。
3.方法对比及Lasso引入
之前是在word写的,这里为了方便截图一下。
Lasso估计论文学习笔记(一)的更多相关文章
- 论文学习笔记 - 高光谱 和 LiDAR 融合分类合集
A³CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Se ...
- Apache Calcite 论文学习笔记
特别声明:本文来源于掘金,"预留"发表的[Apache Calcite 论文学习笔记](https://juejin.im/post/5d2ed6a96fb9a07eea32a6f ...
- Raft论文学习笔记
先附上论文链接 https://pdos.csail.mit.edu/6.824/papers/raft-extended.pdf 最近在自学MIT的6.824分布式课程,找到两个比较好的githu ...
- 论文学习笔记--无缺陷样本产品表面缺陷检测 A Surface Defect Detection Method Based on Positive Samples
文章下载地址:A Surface Defect Detection Method Based on Positive Samples 第一部分 论文中文翻译 摘要:基于机器视觉的表面缺陷检测和分类可 ...
- 论文学习笔记 - Classifification of Hyperspectral and LiDAR Data Using Coupled CNNs
Classifification of Hyperspectral and LiDAR Data Using Coupled CNNs 来源:IEEE TGRS 2020 下载:https://arx ...
- QA问答系统,QA匹配论文学习笔记
论文题目: WIKIQA: A Challenge Dataset for Open-Domain Question Answering 论文代码运行: 首先按照readme中的提示安装需要的部分 遇 ...
- Lasso估计学习笔记(二)
先看Lasso估计学习笔记(一),这篇是续的上一篇
- 深度学习笔记(七)SSD 论文阅读笔记简化
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针 ...
- 深度学习笔记(七)SSD 论文阅读笔记
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针 ...
随机推荐
- .NET多线程之调用上下文CallContext
命名空间:System.Runtime.Remoting.Messaging 类型完全限定名称:System.Runtime.Remoting.Messaging.CallContext 官方介绍:h ...
- MyBatis if标签的用法
<!-- 4.1.1 在WHERE条件中使用if 需求: 实现一个用户管理高级查询功能,根据输入的条件去检索用户信息.这个功能 还需要支持以下三种情况:当只有输入用户名时,需要根据用户名进行模糊 ...
- [原创]Zabbix3.4_API的python示例
说明: 1.python版本为:python2.7 2.zabbix版本为:zabbix3.4 3.通过python脚本调用zabbix的api接口可以实现批量增删改查主机的信息. 示例如下: #-* ...
- MySQL常见操作指令
1:使用SHOW语句找出在服务器上当前存在什么数据库: mysql> SHOW DATABASES; 2:创建一个数据库MYSQLDATA mysql> CREATE DATABASE M ...
- LeetCode第2题
// 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字.//// 如果,我们将这两个数相加起来,则会返回一个新的链表 ...
- Excel催化剂开源第44波-窗体在Show模式下受Excel操作影响变为最小化解决方式
在Excel催化剂的许多功能中,都会开发窗体用于给用户更友好的交互使用,但有一个问题,困扰许久,在窗体上运行某些代码后,中途弹出下MessageBox对话框给用户做一些简单的提示或交互时,发现程序运行 ...
- Word公式显示为{EMBED Equation.DSMT4}
具体问题表现为: 添加了Mathtype公式后显示为{EMBED Equation.DSMT4}, 超链接显示为大花括号和描述文本, 页码显示为 page... 具体解决方法如下,(以Office2 ...
- 机器学习-EM算法
最大期望算法 EM算法的正式提出来自美国数学家Arthur Dempster.Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准 ...
- RabbitMQ 实践之在处理异步任务中的流程
一.背景: 我司的系统,用户可以创建任务,启动任务,但任务的运行需要很长的时间,所以采用消息队列的方式,后台异步处理. 这里所用到的是 RabbitMQ . 二.MQ 处理任务的流程 ① ② ③ ④ ...
- org.mybatis.spring.MyBatisSystemException异常及处理
org.mybatis.spring.MyBatisSystemException异常处理 测试场景 在测试springboot中使用MyBatis/通用Mapper的自定义方法时出现此异常. 异常如 ...