Paper | Non-Local ConvLSTM for Video Compression Artifact Reduction
【这是MFQE 2.0的第一篇引用,也是博主学术生涯的第一篇引用。最重要的是,这篇文章确实抓住了MFQE方法的不足之处,而不是像其他文章,随意改改网络罢了。虽然引的是arXiv版本,但是很开心!欢迎大家引用TPAMI版本!】
在MFQE的基础上,作者提出了一个问题:“好”帧里的块的质量就好吗?“差”帧里的块的质量就差吗?显然不一定,因为帧的好/坏是由整张图像的综合质量决定的(如PSNR)。
为了解决这个问题,作者提出用non-local结合ConvLSTM的思路。众所周知,NL是很耗时的,因此作者提出了一种近似计算帧间相似性的方法,从而加速NL过程。由于使用了ConvLSTM,因此本方法不再需要精确的MC。
1. 方法
1.1 框图
图画得很清楚。这是一个典型的Conv-LSTM,会连续输入多帧的卷积特征。在输出端,当前帧对应的双向隐藏层特征被拼接,进一步处理,最后作为残差与输入相加,即得到输出。
关键在于Conv-LSTM细胞的改进。由于去掉了MC组分,因此如果存在较大的运动位移,LSTM对运动的建模很可能失败。为此,作者引入了NL机制来建模运动位移。但是注意,这里的NL用来捕捉特征图间像素的相似性,而不是特征图内像素的相似性。因此,上一特征图\(F_t\)也要输入NL模块,但不输入Conv-LSTM细胞!
1.2 NL流程
我们具体讲一下改进后Conv-LSTM的工作流程。以下都以单向举例。
首先,ConvLSTM的经典输入输出格式是:输入当前特征图\(F_t\)、上一时刻隐藏层状态\(H_{t-1}\)和上一时刻细胞状态\(C_{t-1}\),输出当前时刻的隐藏层状态\(H_{t}\)和细胞状态\(C_{t}\):
\[
[H_{t}, C_{t}] = \text{ConvLSTM} (F_t, [H_{t-1}, C_{t-1}])
\]
为了让LSTM更好地建模运动位移,尤其是大尺度运动,作者在Conv-LSTM前引入NL技术,但是是特征图间的NL:
\[
S_t = \text{NL} (F_{t-1}, F_{t})
\]
\(S_t\)代表像素相似性,计算公式为:
\[
D_t(i,j) = \Vert F_{t-1} (i) - F_t (j) \Vert_2
\]
\[
S_t(i,j) = \frac{\exp (-D_t(i,j) / \beta)}{\sum_i \exp ((-D_t(i,j) / \beta)}
\]
其中,\(S_t(i,j)\)说的是 \(t-1\)特征图的第\(i\)个元素 与 当前\(t\)特征图的第\(j\)个元素 的相似度。显然要求关于\(i\)求和为1,因此用分母归一化。
NL的第二步,就是基于计算出的相似度,执行扭曲:
\[
[\hat{H}_{t}, \hat{C}_{t}] = \text{NLWarp} ([H_{t-1}, C_{t-1}], S_t)
\]
具体操作很简单:
\[
[\hat{H}_{t}, \hat{C}_{t}] = [\hat{H}_{t-1} \cdot S_t, \hat{C}_{t-1} \cdot S_t]
\]
【论文中的公式(4)有误,时刻写错了?】
1.3 加速版NL
如果严格按照以上步骤算,运动复杂度会很高。为此,作者引入了两步NL方法来近似 欧几里得距离\(D_t\) 和 特征图间像素相似度\(S_t\)。
首先,对输入的特征图\(F_{t-1}\)和\(F_t\),我们作\(p \times p\)的平均池化,得到\(F^p_{t-1}\)和\(F_t^p\)。实验取\(p = 10\)。
然后我们再算它们的欧几里得距离矩阵\(D_t^p\)。此时,我们就能得到最相关的k个点。实验取\(k = 4\)。
这k个点对应原\(F_{t-1}\)的\(k \times p^2\)个点。后续操作就和上面一致了。
换句话说,这里有两点加速:(1)并不考虑所有点的相互关系,而只考虑前k个(其他的S为0);(2)先池化,在低维度上计算相似度。一个点代表一个块。
2. 实验
表2的前两列说明:输入多帧比输入单帧效果更好。作者还尝试了输入前后共20帧,结果比表2第4列还好。
作者尝试将NL换成了MC,结果不如NL,在dpsnr上差了20%。
NL找到的相似块也比较准。参见论文图4,红框是黄框的检测相似框。
Conv-LSTM耗时很猛,比对比算法高出好几倍,是MFQE 1.0的6-7倍。原因是要处理相邻多帧。但作者的加速已经很有效了,比原始NL加速了4倍。
3. 总结
本文对Fig1中阐释的问题进行了一定程度的处理。原因是:1、光流很难顾及全局关系,但相关度矩阵很擅长处理远距离关系。这就类似于GNN相比于传统CNN的优势。2、输入更多的相邻帧。
因此,本文的核心贡献是:在用Conv-LSTM建模时序和空域关系的同时,加入NL辅助完成了类似MC的功能。
Paper | Non-Local ConvLSTM for Video Compression Artifact Reduction的更多相关文章
- Paper | One-to-Many Network for Visually Pleasing Compression Artifacts Reduction
目录 故事 网络设计 网络前端 升采样中的平移-均值化 网络度量 训练 发表于2017年CVPR. 目标:JPEG图像去压缩失真. 主要内容: 同时使用感知损失.对抗损失和JPEG损失(已知量化间隔, ...
- DeepCoder: A Deep Neural Network Based Video Compression
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测 ...
- Paper | A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts
目录 非盲增强网络结构 训练目标 压缩系数预测子网络 网络结构 根据块QP判决结果得到帧QP预测结果 保持时序连续性 实验 发表在2019年TCSVT. 本文提出了一个兼具 预测压缩系数 和 非盲去压 ...
- Paper | Compression artifacts reduction by a deep convolutional network
目录 1. 故事 2. 方法 3. 实验 这是继SRCNN(超分辨)之后,作者将CNN的战火又烧到了去压缩失真上.我们看看这篇文章有什么至今仍有启发的故事. 贡献: ARCNN. 讨论了low-lev ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- Video processing systems and methods
BACKGROUND The present invention relates to video processing systems. Advances in imaging technology ...
- paper 27 :图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)
1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual ...
- SCI&EI 英文PAPER投稿经验【转】
英文投稿的一点经验[转载] From: http://chl033.woku.com/article/2893317.html 1. 首先一定要注意杂志的发表范围, 超出范围的千万别投,要不就是浪费时 ...
- ### Paper about Event Detection
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...
随机推荐
- IT兄弟连 Java语法教程 数组 深入数组 内存中的数组
数组是一种引用数据类型,数组引用变量只是一个引用,数组元素和数组变量在内存里是分开存放的.下面将深入介绍数组在内存中的运行机制. 内存中的数组 数组引用变量只是一个引用,这个引用变量可以指向任何有效的 ...
- Java电商项目-3.使用VSFTPD_Nginx完成商品新增
目录 到Github获取源码请点击此处 一. 商品类目查询 二. FTP图片服务器的搭建 图片上传思路介绍 Linux中安装vsftpd 接着配置ftp服务, 让外网可以访问 Http服务器搭建 Ng ...
- 用css做三角形
<html> <body> <style> .trlangle{ width: 0; height: 0; border-left: 50px solid tran ...
- python : html 调用本地python程序
<!DOCTYPE html> <html> <head> <meta charset="gb2312"> <title> ...
- 搭建RTMP直播流服务器
最近项目比较紧张,所以没什么时间写博客,正好这几天没什么事,赶紧记录下自己最近所学. 环境配置 服务器选用 服务器我选择的是小鸟云 ,原因很简单,他的个人用户有3个月免费使用时间. 服务器环境 Win ...
- SSH免密码登录和Git免密操作
SSH免密码登录和Git免密操作 每次打完包后都需要把包传到对应的服务器上从而让测试人员下载安装,但是每次ssh或scp时都需要重新输入密码:使用git代码托管平台只要修改了密码就需要输入密码.本文主 ...
- [转]国内阿里Maven仓库镜像Maven配置文件Maven仓库速度快
原文地址:http://www.cnblogs.com/ae6623/p/4416256.html 国内连接maven官方的仓库更新依赖库,网速一般很慢,收集一些国内快速的maven仓库镜像以备用. ...
- [b0003] 总览:Hadoop 个人学习路线进展
3. Spark 搭建 过 1.1 搭建伪分布式2.0.1 ok 2016-10-23 耗时 2h ref [0006] Spark 2.0.1 伪分布式搭建练手 后续: 1.2 分布 ...
- vue组件懒加载
vue2组件懒加载浅析 一. 什么是懒加载 懒加载也叫延迟加载,即在需要的时候进行加载,随用随载. 二.为什么需要懒加载 在单页应用中,如果没有应用懒加载,运用webpack打包后的文件将会异常的大, ...
- shell中的fg 命令
fg(前台执行) frontground bg(后台执行) background & daemon 总结: 一般命令在前台执行(fg),执行完毕后,控制返回给用户. 在命令后面加上&, ...